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Review: Simple Multi-core Processor
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Review: Multiprocessor Caches
• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed 

recently
• Only cache misses have to access the shared common memory
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Review: Keeping Multiple Caches Coherent
• Architect’s job: shared memory 

=> keep cache values coherent
• Idea: When any processor has cache miss or 

writes, notify other processors via interconnection 
network
– If only reading, many processors can have copies
– If a processor writes, invalidate any other copies

• Write transactions from one processor, other 
caches  “snoop” the common interconnect 
checking for tags they hold
– Invalidate any copies of same address modified in other 

cache

4



Review: Cache Coherency Tracked by Block

• Suppose block size is 32 bytes
• Suppose Processor 0 reading and writing variable X, Processor 

1 reading and writing variable Y
• Suppose in X location 4000,  Y in 4012
• What will happen?
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Review: Understanding Cache Misses:

The 3Cs

• Compulsory (cold start or process migration, 1st reference):

– First access to block, impossible to avoid; small effect for long-running 

programs

– Solution: increase block size (increases miss penalty; very large blocks 

could increase miss rate)

• Capacity (not compulsory and…)

– Cache cannot contain all blocks accessed by the program even with 
perfect replacement policy in fully associative cache

– Solution: increase cache size (may increase access time)

• Conflict (not compulsory or capacity and…):

– Multiple memory locations map to the same cache location

– Solution 1: increase cache size

– Solution 2: increase associativity (may increase access time)

– Solution 3: improve replacement policy, e.g.. LRU
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Review: Coherency Tracked by Cache Block

• Block ping-pongs between two caches even 
though processors are accessing disjoint 
variables

• Effect called false sharing 
• How can you prevent it?
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Review: Fourth “C” of Cache Misses:
Coherence Misses

• Misses caused by coherence traffic with other 
processor

• Also known as communication misses because 
represents data moving between processors 
working together on a parallel program

• For some parallel programs, coherence misses 
can dominate total misses
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Bus Management

• A “bus” is a collection of shared wires
– Newer “busses” use point-point links

• Only one “master” can initiate a transaction by driving wires at any one time
• Multiple “slaves” can observe and conditionally respond to the transaction on 

the wires
– slaves decode address on bus to see if they should respond (memory is most 

common slave)
– some masters can also act as slaves

• Masters arbitrate for access with requests to bus “controller”
– Some busses only allow one master (in which case, it’s also the controller) 9
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Shared-Memory Multiprocessor
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Snoopy Cache, Goodman 1983

• Idea: Have cache watch (or snoop upon) other memory 
transactions, and then “do the right thing”

• Snoopy cache tags are dual-ported
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Snoopy Cache-Coherence Protocols

• Write miss:  
– the address is invalidated in all other caches before the 

write is performed

• Read miss:  
– if a dirty copy is found in some cache, a write-back is 

performed before the memory is read  
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Cache State-Transition Diagram
The MSI protocol
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Two-Processor Example
(Reading and writing the same cache line)
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Observation

• If a line is in the M state then no other cache can have a copy of the 
line!

• Memory stays coherent, multiple differing copies cannot exist
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MESI: An Enhanced MSI protocol
increased performance for private data
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Optimized Snoop with Level-2 Caches

• Processors often have two-level caches
– small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
– invalidation in L2 =>  invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth
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Intervention
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When a read-miss for A occurs in cache-2, 
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared
• The memory may respond to the request also!

Does memory know it has stale data?
Cache-1 needs to intervene through memory controller to supply 
correct data to cache-2
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False Sharing
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state     line addr data0 data1        ...            dataN

A cache line contains more than one word

Cache-coherence is done at the line-level and not 
word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same line address.

What can happen?



Performance of
Symmetric Multiprocessors (SMPs)

Cache performance is combination of:
• Uniprocessor cache miss traffic
• Traffic caused by communication 

– Results in invalidations and subsequent cache misses

• Coherence misses
– Sometimes called a Communication miss

• Read miss: remote core write
• Write miss: remote core write or read

– 4th C of cache misses along with Compulsory, Capacity, & 
Conflict.
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Coherency Misses
• True sharing misses arise from the communication of 

data through the cache coherence mechanism
– Invalidates due to 1st write to shared line
– Reads by another CPU of modified line in different cache
– Miss would still occur if line size were 1 word

• False sharing misses when a line is invalidated 
because some word in the line, other than the one 
being read, is written into
– Invalidation does not cause a new value to be communicated, but only 

causes an extra cache miss
– Line is shared, but no word in line is actually shared

Þ miss would not occur if line size were 1 word
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Example: True v. False Sharing v. Hit?
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Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache line. 
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; x2 not writeable

True miss; invalidate x2 in P1



MP Performance 4-Processor Commercial Workload:
OLTP, Decision Support (Database), Search Engine
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MP Performance 2MiB Cache Commercial Workload:
OLTP, Decision Support (Database), Search Engine
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Scaling Snoopy/Broadcast Coherence
• When any processor gets a miss, must probe every other cache

• Scaling up to more processors limited by:

– Communication bandwidth over bus

– Snoop bandwidth into tags

• Can improve bandwidth by using multiple interleaved buses with 

interleaved tag banks

– E.g, two bits of address pick which of four buses and four tag banks to use 

– (e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte 

line)

• Buses don’t scale to large number of connections, so can use 

point-to-point network for larger number of nodes, but then 

limited by tag bandwidth when broadcasting snoop requests.

• Insight: Most snoops fail to find a match!
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Scalable Approach: Directories
• Can use point-to-point network for larger number of

nodes, but then limited by tag bandwidth when
broadcasting snoop requests

• Every memory line has associated directory 
information
– keeps track of copies of cached lines and their states
– on a miss, find directory entry, look it up, and communicate only with 

the nodes that have copies if necessary
– in scalable networks, communication with directory and copies is 

through network transactions

• Many alternatives for organizing directory 
information
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Directory Cache Protocol
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• Assumptions: Reliable network, FIFO message delivery 
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Cache States

• For each cache line, there are 4 possible states:
– C-invalid (= Nothing): The accessed data is not resident in the 

cache.

– C-shared (= Sh): The accessed data is resident in the cache, and 
possibly also cached at other sites. The data in memory is valid.

– C-modified (= Ex): The accessed data is exclusively resident in this 
cache, and has been modified. Memory does not have the most 
up-to-date data.

– C-transient (= Pending): The accessed data is in a transient state 
(for example, the site has just issued a protocol request, but has 
not received the corresponding protocol reply).
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Home directory states
• For each memory line, there are 4 possible states:

– R(dir): The memory line is shared by the sites specified in dir (dir is a 
set of sites). The data in memory is valid in this state.  If dir is empty 
(i.e., dir = ε), the memory line is not cached by any site.

– W(id): The memory line is exclusively cached at site id, and has been 
modified at that site. Memory does not have the most up-to-date 
data.

– TR(dir): The memory line is in a transient state waiting for the 
acknowledgements to the invalidation requests that the home site 
has issued.

– TW(id): The memory line is in a transient state waiting for a line 
exclusively cached at site id (i.e., in C-modified state) to make the 
memory line at the home site up-to-date.
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Read miss, to uncached or shared line
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Write miss, to read shared line
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Concurrency Management

• Protocol would be easy to design if only one 
transaction in flight across entire system

• But, want greater throughput and don’t want to have 
to coordinate across entire system

• Great complexity in managing multiple outstanding 
concurrent transactions to cache lines
– Can have multiple requests in flight to same cache line!
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