
CS 110
Computer Architecture

Cache Coherence

Guest Instructor:
Prof. Shu Yin

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C, CS152 and CS252

https://robotics.shanghaitech.edu.cn/courses/ca

Review: Simple Multi-core Processor

2

Processor 0

Control

Datapath
PC

Registers
(ALU)

Memory Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers
(ALU)

Processor 1
Memory
Accesses

Review: Multiprocessor Caches
• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed

recently
• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

3

Review: Keeping Multiple Caches Coherent
• Architect’s job: shared memory

=> keep cache values coherent
• Idea: When any processor has cache miss or

writes, notify other processors via interconnection
network
– If only reading, many processors can have copies
– If a processor writes, invalidate any other copies

• Write transactions from one processor, other
caches “snoop” the common interconnect
checking for tags they hold
– Invalidate any copies of same address modified in other

cache

4

Review: Cache Coherency Tracked by Block

• Suppose block size is 32 bytes
• Suppose Processor 0 reading and writing variable X, Processor

1 reading and writing variable Y
• Suppose in X location 4000, Y in 4012
• What will happen?

5

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028
Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

Review: Understanding Cache Misses:

The 3Cs

• Compulsory (cold start or process migration, 1st reference):

– First access to block, impossible to avoid; small effect for long-running

programs

– Solution: increase block size (increases miss penalty; very large blocks

could increase miss rate)

• Capacity (not compulsory and…)

– Cache cannot contain all blocks accessed by the program even with
perfect replacement policy in fully associative cache

– Solution: increase cache size (may increase access time)

• Conflict (not compulsory or capacity and…):

– Multiple memory locations map to the same cache location

– Solution 1: increase cache size

– Solution 2: increase associativity (may increase access time)

– Solution 3: improve replacement policy, e.g.. LRU

6

Review: Coherency Tracked by Cache Block

• Block ping-pongs between two caches even
though processors are accessing disjoint
variables

• Effect called false sharing
• How can you prevent it?

7

Review: Fourth “C” of Cache Misses:
Coherence Misses

• Misses caused by coherence traffic with other
processor

• Also known as communication misses because
represents data moving between processors
working together on a parallel program

• For some parallel programs, coherence misses
can dominate total misses

8

Bus Management

• A “bus” is a collection of shared wires
– Newer “busses” use point-point links

• Only one “master” can initiate a transaction by driving wires at any one time
• Multiple “slaves” can observe and conditionally respond to the transaction on

the wires
– slaves decode address on bus to see if they should respond (memory is most

common slave)
– some masters can also act as slaves

• Masters arbitrate for access with requests to bus “controller”
– Some busses only allow one master (in which case, it’s also the controller) 9

Master 0 Master 1 Slave 0 Slave 1Bus
Controller

Clock/Control
Address

Data

RequestGrant

Shared-Memory Multiprocessor

10

CPU1

Use snoopy mechanism to keep all processors’ view of
memory coherent

Memory
Bus

Main
Memory
(DRAM)

DMA

Snoopy
Cache

CPU2
Snoopy
Cache

CPU3
Snoopy
Cache

Disk

DMA Network

Bus Control

Snoopy Cache, Goodman 1983

• Idea: Have cache watch (or snoop upon) other memory
transactions, and then “do the right thing”

• Snoopy cache tags are dual-ported

11

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

Snoopy Cache-Coherence Protocols

• Write miss:
– the address is invalidated in all other caches before the

write is performed

• Read miss:
– if a dirty copy is found in some cache, a write-back is

performed before the memory is read

12

Cache State-Transition Diagram
The MSI protocol

13

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has state bits

Address tag
state
bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

Read miss
(P1 gets line from memory)

P1
int

en
t to

 w
rite

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

Two-Processor Example
(Reading and writing the same cache line)

14

M

S I

Write miss

Read
miss

P 1
intent to

 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss

P 2
intent to

 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

Observation

• If a line is in the M state then no other cache can have a copy of the
line!

• Memory stays coherent, multiple differing copies cannot exist

15

M

S I

Write miss

Other processor
intent to write

Read
miss

P1
int

en
t to

 w
rite

Other processor
intent to write

Read by any
processor

P1 reads
or writesOther processor reads

P1 writes back

MESI: An Enhanced MSI protocol
increased performance for private data

16

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag
state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent to
write

Read miss,
not sharedOther

processor
reads

Other processor
intent to write, P1
writes back

Optimized Snoop with Level-2 Caches

• Processors often have two-level caches
– small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
– invalidation in L2 => invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth

17

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

Intervention

18

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared
• The memory may respond to the request also!

Does memory know it has stale data?
Cache-1 needs to intervene through memory controller to supply
correct data to cache-2

cache-1A 200

CPU-Memory bus

CPU-1 CPU-2

cache-2

memory (stale data)A 100

False Sharing

19

state line addr data0 data1 ... dataN

A cache line contains more than one word

Cache-coherence is done at the line-level and not
word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same line address.

What can happen?

Performance of
Symmetric Multiprocessors (SMPs)

Cache performance is combination of:
• Uniprocessor cache miss traffic
• Traffic caused by communication

– Results in invalidations and subsequent cache misses

• Coherence misses
– Sometimes called a Communication miss

• Read miss: remote core write
• Write miss: remote core write or read

– 4th C of cache misses along with Compulsory, Capacity, &
Conflict.

20

Coherency Misses
• True sharing misses arise from the communication of

data through the cache coherence mechanism
– Invalidates due to 1st write to shared line
– Reads by another CPU of modified line in different cache
– Miss would still occur if line size were 1 word

• False sharing misses when a line is invalidated
because some word in the line, other than the one
being read, is written into
– Invalidation does not cause a new value to be communicated, but only

causes an extra cache miss
– Line is shared, but no word in line is actually shared

Þ miss would not occur if line size were 1 word

21

Example: True v. False Sharing v. Hit?

22

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache line.
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; x2 not writeable

True miss; invalidate x2 in P1

MP Performance 4-Processor Commercial Workload:
OLTP, Decision Support (Database), Search Engine

23

0
0.25
0.5

0.75

1
1.25
1.5

1.75
2

2.25

2.5
2.75

3
3.25

1 MB 2 MB 4 MB 8 MB

Cache size

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

• Uniprocessor cache
misses
improve with
cache size increase
(Instruction,
Capacity/Conflict,
Compulsory)

• True sharing and
false sharing
unchanged going
from 1 MB to 8 MB
(L3 cache)

MP Performance 2MiB Cache Commercial Workload:
OLTP, Decision Support (Database), Search Engine

24

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

• True sharing,
false sharing
increase going
from 1 to 8 CPUs

Scaling Snoopy/Broadcast Coherence
• When any processor gets a miss, must probe every other cache

• Scaling up to more processors limited by:

– Communication bandwidth over bus

– Snoop bandwidth into tags

• Can improve bandwidth by using multiple interleaved buses with

interleaved tag banks

– E.g, two bits of address pick which of four buses and four tag banks to use

– (e.g., bits 7:6 of address pick bus/tag bank, bits 5:0 pick byte in 64-byte

line)

• Buses don’t scale to large number of connections, so can use

point-to-point network for larger number of nodes, but then

limited by tag bandwidth when broadcasting snoop requests.

• Insight: Most snoops fail to find a match!

25

Scalable Approach: Directories
• Can use point-to-point network for larger number of

nodes, but then limited by tag bandwidth when
broadcasting snoop requests

• Every memory line has associated directory
information
– keeps track of copies of cached lines and their states
– on a miss, find directory entry, look it up, and communicate only with

the nodes that have copies if necessary
– in scalable networks, communication with directory and copies is

through network transactions

• Many alternatives for organizing directory
information

26

Directory Cache Protocol

27

• Assumptions: Reliable network, FIFO message delivery
between any given source-destination pair

CPU

Cache

Interconnection Network

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

DataTagStat.

Each line in cache has
state field plus tag

DataStat. Directry

Each line in memory
has state field plus bit
vector directory with
one bit per processor

Cache States

• For each cache line, there are 4 possible states:
– C-invalid (= Nothing): The accessed data is not resident in the

cache.

– C-shared (= Sh): The accessed data is resident in the cache, and
possibly also cached at other sites. The data in memory is valid.

– C-modified (= Ex): The accessed data is exclusively resident in this
cache, and has been modified. Memory does not have the most
up-to-date data.

– C-transient (= Pending): The accessed data is in a transient state
(for example, the site has just issued a protocol request, but has
not received the corresponding protocol reply).

28

Home directory states
• For each memory line, there are 4 possible states:

– R(dir): The memory line is shared by the sites specified in dir (dir is a
set of sites). The data in memory is valid in this state. If dir is empty
(i.e., dir = ε), the memory line is not cached by any site.

– W(id): The memory line is exclusively cached at site id, and has been
modified at that site. Memory does not have the most up-to-date
data.

– TR(dir): The memory line is in a transient state waiting for the
acknowledgements to the invalidation requests that the home site
has issued.

– TW(id): The memory line is in a transient state waiting for a line
exclusively cached at site id (i.e., in C-modified state) to make the
memory line at the home site up-to-date.

29

Read miss, to uncached or shared line

30

Directory
Controller

DRAM Bank

CPU

Cache

1
Load request at head of

CPU->Cache queue.

2Load misses in cache.

3Send ShReq message
to directory.

4
Message received at
directory controller.

5Access state and directory for
line. Line’s state is R, with zero or

more sharers.

6
Update directory by
setting bit for new
processor sharer.

7 Send ShRep message with
contents of cache line.

8 ShRep arrives at cache.

9
Update cache tag and data and

return load data to CPU.

Interconnection Network

Write miss, to read shared line

31

Directory
Controller

DRAM Bank

CPU

Cache

1
Store request at head of

CPU->Cache queue.

2Store misses in cache.

3Send ExReq message
to directory.

4
ExReq message received
at directory controller.

5Access state and directory for
line. Line’s state is R, with some

set of sharers.

6 Send one InvReq
message to each sharer.

11
ExRep arrives

at cache

12

Update cache tag and
data, then store data

from CPU

Interconnection Network

CPU

Cache

7
InvReq arrives

at cache.8

Invalidate
cache line.

Send InvRep
to directory.

9InvRep received.
Clear down sharer

bit.

10When no more sharers,
send ExRep to cache.

Multiple sharers

CPU

Cache

CPU

Cache

Concurrency Management

• Protocol would be easy to design if only one
transaction in flight across entire system

• But, want greater throughput and don’t want to have
to coordinate across entire system

• Great complexity in managing multiple outstanding
concurrent transactions to cache lines
– Can have multiple requests in flight to same cache line!

32

