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RISC-V Assembly

.foo
1w t0,
addi t1,
beg t1,
nop

4(sl)

t0,
t2,

3
foo

0x00115863

s (x2)

9P (x3)

tp (xa)

0 (x5)

£ (x6)

€2 (x7)

50 (x8)

C Programs

int fib(int n)
return
fib(n-1) +
fib(n-2);

#include <stdlib.h>

{
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So how is this any different?

Screen

Storage



Adding 1/0

#include <stdlib.h>

. RISC-V Assembly int iib(int n) |
PrO]eCt 2 - flilb(n—l) +
v t0, 4(sl) ) £ib(n-2);
addi t1, t0, 3
beg t1, t2, foo
nop .
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Raspberry Pi (< 300RMB on jd.com)
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It’s a real computer!




But wait...

* That’s not the same! When we run VENUS, it only
executes one program and then stops.

* When | switch on my computer, | get this:

Yes, but that’s just software! The Operating System (OS)



Well, “just software”

* The biggest piece of software on your machine?

* How many lines of code? These are guesstimates:

Mic

Wi dwth

soft Visual Studio 2012

US Army Future Combat System
fast battlefield network system (aborted)

Debian 5.0 codebase
free, oper em

Mac OS X* Tg

C ftwar
average mo

OOOOO

Codebases (in millions of lines of code). CC BY-NC 3.0 — David McCandless © 2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/



Operating System

Number of lines of code in the Linux kernel

Linux kernel version

26.11 I 6,624,076

26.12 I (777,860

26.13 TEEE—— ¢, 388 800

26.14 EEEEEE——— 7,143,233

2.6.15 E——— 7 290,070

26.16 TEEEEEE——— 7 480,062

26.17 I 7,588,014

26.18 T 7,752,846

2.6.10 T —— 7,976,221

2620 T ——— £ 102,533

2621 TEE—— £ 246,517

2.6.22 T ———— 8 499,410

2623 EEEEEEEEEEEEEEESEE——— 8 566,606

2624 I 8,859,683

2625 I O, 232 592

2.6.260 T —— O 411,841

2627 T ———— ) 630,074

2620 T — 1 0,118,757

2.6.20 T ——— 1,934,554

2.6.30 e ——— 1 1,560,971

2.6.31 T — 1 { 370,124

26.32 T ——— {2 532 677

12.6.33 T —— 12 912,684

26.34 T — |3 243,582

2.6.35 T ——— 1 3,468,253

2.6.36 T —— {3 422 037

2.6.37 N ———, 13 919,579

2.6.30 N 14,211,814

2.6.39 e —— {4 537 764
3.0 ——— 14,651,135
3.1 T —— 14, 776,002
3.2 T ——— {5, 004,006

Star Office
XEmacs

Shells: sh, bash, ksh Fortran

Gnome
Linux-Kernel

Hardware

Linux-Kernel

inetd: telnet, ftp, slogin

Informix

Netscape
Mathematica

Data source: Linux Foundation www.pingdom.com
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What does the OS do?

One of the first things that runs when your computer
starts (right after firmware/ bootloader)
Loads, runs and manages programs:

— Multiple programs at the same time (time-sharing)
— Isolate programs from each other (isolation)

— Multiplex resources between applications (e.g., devices)
Services: File System, Network stack, etc.

Finds and controls all the devices in the machine in a
general way (using “device drivers”)



Agenda

Devices and I/O

OS Boot Sequence and Operation
Multiprogramming/time-sharing
Introduction to Virtual Memory



* Devices and I/O

Agenda
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How to interact with devices?

* Assume a program running on a CPU. How does it
interact with the outside world?

* Need I/0 interface for Keyboards,
Network, Mouse, Screen, etc.

— Connect to many types of devices

— Control these devices, respond
to them, and transfer data

— Present them to user
programs so
they are useful <

Operating System

cmd reg.
data reg.




Instruction Set Architecture for I/O

* What must the processor do for |/0?

— Input: reads a sequence of bytes
— Output: writes a sequence of bytes

* Some processors have special input and output
instructions

e Alternative model (used by MIPS):
— Use loads for input, stores for output (in small pieces)
— Called Memory Mapped Input/Output

— A portion of the address space dedicated to
communication paths to Input or Output devices (no
memory there)

14



Memory Mapped I/0

* Certain addresses are not regular memory

* |nstead, they correspond to registers in I/O devices

address
OXFFFFFFFF

R
_—
-
-

OxFFFF0O000 cntrl reg.
~~~~~~~~~~ data reg.
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Processor-1/O Speed Mismatch

1GHz microprocessor can execute 1B load or store
instructions per second, or 4,000,000 KB/s data rate

* |/O data rates range from 0.01 KB/s to 1,250,000 KB/s
Input: device may not be ready to send data as fast as
the processor loads it

* Also, might be waiting for human to act

Output: device not be ready to accept data as fast as
processor stores it

What to do?

16



Processor Checks Status before Acting

Path to a device generally has 2 registers:

e Control Register, says it’s OK to read/write (I/O ready) [think
of a flagman on a road]

* Data Register, contains data

Processor reads from Control Register in loop, waiting
for device to set Ready bit in Control reg

(0 =>1) to say it’'s OK

Processor then loads from (input) or writes to (output)
data register

* Load from or Store into Data Register resets Ready bit
(1 => 0) of Control Register

This is called “Polling”

17



/O Example (polling)

* Input: Read from keyboard into a0

1i t0, Oxff££0000 #££££0000
Waitloop: lw tl, 0(t0) #control

andi tl1l, tl,0xl

beqg tl, zero, Waitloop

1w a0, 4(to0) #data

e Qutput: Write to display from a0

1i t0, Oxff££f0000 #££££0000
Waitloop: 1w tl, 8(t0) #control

andi tl1l, tl,0xl

beqg tl, zero, Waitloop

SW a0, 12(t0) #data

“Ready” bit is from processor’s point of view!

18



Cost of Polling?

* Assume for a processor with a 1GHz clock it takes

400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning).

Determine % of processor time for polling

— Mouse: polled 30 times/sec so as not to miss user
movement

— Hard disk: assume transfers data in 16-Byte chunks and can
transfer at 16 MB/second. Again, no transfer can be

missed. (we’ll come up with a better way to do this)



% Processor time to poll

* Mouse Polling [clocks/sec]
=30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]
* % Processor for polling:
12%10> [clocks/s] / 1*10° [clocks/s] = 0.0012%
=> Polling mouse little impact on processor
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Question

Hard disk: transfers data in 16-Byte chunks and can
transfer at 16 MB/second. No transfer can be missed.
What percentage of processor time is spent in polling
(assume 1GHz clock; 400 cycles per poll)?

A: 2%
B: 4%
C: 20%
D: 40%
E: 80%



% Processor time to poll hard disk

* Frequency of Polling Disk
=16 [MB/s] / 16 [B/poll] = 1M [polls/s]
* Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]
* % Processor for polling:
400*106 [clocks/s] / 1*109 [clocks/s] = 40%

=> Unacceptable

(Polling is only part of the problem — main problem is that
accessing in small chunks is inefficient)
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What is the alternative to polling?

Wasteful to have processor spend most of its time
“spin-waiting” for I/0 to be ready

Would like an unplanned procedure call that would
be invoked only when I/O device is ready

Solution: use exception mechanism to help
/0. Interrupt program when |I/O ready, return when
done with data transfer

Allow to register (post) interrupt handlers: functions
that are called when an interrupt is triggered

23



Interrupt-driven 1/0O

_ 1. Incoming interrupt suspends instruction stream
Handler Execution 2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU

w

Perform a jal to the handler (needs to store any state)

Stack Frame
4. Handler run on current stack and returns on finish

(thread doesn’t notice that a handler was run)

lw  tl1, 0(t0)
andi tl1, t1,0xl1

1w a0, 4(to0)
sw tl, 8(t0)
ret

Stack Frame

Label: sll1 t1,s3,2
addu tl1,tl,s5

lw  t1,0(tl) €— <
add sl,sl,tl CPU Interrupt Table

addu s3,s3,s4

bne s3,s2,abel Interrupt(SPI0) > SPIO handler

24



Agenda

* OS Boot Sequence and Operation

25



What happens at boot?

* When the computer switches on, it does the same as
Venus: the CPU executes instructions from some
start address (stored in Flash ROM)

CPU

—3 | Memory mapped

0x2000:
addi t0, zero, 0x1000
1w t0, 4(t0)

(Code to copy firmware into
regular memory and jump
into it)

PC = 0x2000 (some default value) —  Address Space

* Bootstrapping:
https://en.wikipedia.org/wiki/Bootstrapping y



https://en.wikipedia.org/wiki/Bootstrapping

What happens at boot?

* When the computer switches on, it does the same as
Venus: the CPU executes instructions from some
start address (stored in Flash ROM)

1. BIOS: Find a storage 4. Init: Iiaunch. an application
device and load first N that waits for input in loop

: <speedup> x
<speedup> x

sector (block of data e (e.g., Terminal/Desktop/...

Which layer should we op/

Diskette Drive B : Nome D TTe
. isk : LBA,ATA 100, 250GB Pa cons .
. Slave Di : LBA,ATA 100, 250GB DDR A p c-tihive22 Linux x86.64
~/src/proj3/proj3_sta
answers.txt cnn  cnnl cnn.py data LICENSE Makefi
. . . capability cs6lc-tiGhive22 Linux xB86_64
i, Slave Disk HDD S.M.AR.T. capability ... D ~/src/proj3/proj3_starter $ s sr elcone to the KNOPPIX 1ive GNU/Limux on DUD!
cnn.c main.c python.c util.c
ting
Fun Uendor Devi c1 S cs6le-tibhive e L
~/src/proj3/proj3._starter $ make can ping Linux Kernel 2.6.24.4.
o 8086 5 1458 A005 — nake: “cnn’ is up to date. 124132kB 118180kB
0 8086 26t 1458 2658 0C03 USB 1.
1 8086 1458 . & o ] hdc [QEMU CD-ROM]
cs6lc-tiehivez2 LinuX x86_64
2 8086 265 1458 2650 . ssrc/projisprogastarter ST lng KNOPPIX DUD at /deu/hdc.
2658 1458 265A USB 1.1 Host . - ol prinary KNOPPIX compressed image at /cdron KNOPPIX/K
265C 1458 5006 USB 1.1 H . Found additional KNOPPIX compressed image at /cdrom/KNOPPI
1458 2651 IDE Cutrlr srandisk shared menory
1458 66A SMBus Cntrlr N
10DE 047 ¢ lay Cntrlr : N J < o s
0500 005 0190 Mack ormer s [>> Read-only DUD system successfully merged with read-urite /randisk.
11AB 4320 1458 E00 0200 Netuork Cntrlr
CPI Control
ARHL tontre sion 2.86 booting
'nnng-mmg for Linux Kernel 2.6.24.4.
rocessor 0 is Pentium 11 (Klamath) 1662MHz, 128 KB Cache
pnd[16081: apnd 3.2.1 interfacing with apn driver 1.16ac and APM BIOS 1.2

APN Bios found, pouer management functioms enabled.
ISB found, managed by udeu
Ubuntu 8.64, kernel 2.6.24-16-gene Suire found, managed by udev
L4 ¥4 . . Ubuntu 8.84, memtest86+ ‘toconfiguring devices. ..
.
disk): Load the OS kernel from
.
ey .
.
disk into a location in memor ) oot: Initialize
Y : :
Use the 1 and ¢ keys to select which emtry is highlighted. Se rvlces d rlve rS etc
. . . Press enter to boot the selected 0S, ‘e’ to edit the ’ ’ .
an Ju m p |nto |t Tefare baoting, or -c for a comnand-1ins.
.



UEFI
Unified Extensible Firmware Interface

7”7

e Successor of BIOS
 Much more powerful and complex

e E.g. graphics menu; networking;
browsers

e All modern Intel & AMD

based computer use UEFI

[ Extensible Firmware Interface }

N~
| Firmware

28
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Intel: ModernFW, Open Source UEF!

https://github.com/intel/ModernFW

Announced a few days ago at the Intel Open Source
Technology Summit (OSTS)

First hardware systems expected to boot in one year

Benefits:

— Vendors & users could verify ALL code of the system ->
security

— In the end, more high quality UEFI implementations

29


https://github.com/intel/ModernFW

Launching Applications

Applications are called “processes” in most OSs.
Created by another process calling into an OS routine
(using a “syscall”, more details later).

— Depends on OS, but Linux uses fork to create a new
process, and execve to load application.

Loads executable file from disk (using the file system
service) and puts instructions & data into memory
(.text, .data sections), prepare stack and heap.

Set argc and argy, jump into the main function.



Supervisor Mode

* If something goes wrong in an application, it could
crash the entire machine. And what about malware,

etc.?

* The OS may need to enforce resource constraints to
applications (e.g., access to devices).

* To help protect the OS from the application, CPUs have
a supervisor mode bit.

— A process can only access a subset of instructions and
(physical) memory when not in supervisor mode (user
mode).

— Process can change out of supervisor mode using a special
instruction, but not into it directly — only using an interrupt.



Syscalls

 What if we want to call into an OS routine? (e.g., to
read a file, launch a new process, send data, etc.)

— Need to perform a syscall: set up function arguments in
registers, and then raise software interrupt

— OS will perform the operation and return to user mode

* Also, OS uses interrupts for scheduling process
execution:
— OS sets scheduler timer interrupt then drops to user mode
and start executing a user task, when interrupts triggers,

switch into supervisor mode, select next task to execute (&
set timer) and drop back to user mode.

* This way, the OS can mediate access to all resources,
including devices and the CPU itself.



Agenda

* Multiprogramming/time-sharing
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Multiprogramming
The OS runs multiple applications at the same time.

But not really (unless you have a core per process)

Switches between processes very quickly. This is
called a “context switch”.

When jumping into process, set timer interrupt.

— When it expires, store PC, registers, etc. (process state).
— Pick a different process to run and load its state.

— Set timer, change to user mode, jump to the new PC.

Deciding what process to run is called scheduling.



Protection, Translation, Paging

e Supervisor mode does not fully isolate applications
from each other or from the OS.
— Application could overwrite another application’s memory.

— Also, may want to address more memory than we actually
have (e.g., for sparse data structures).

e Solution: Virtual Memory. Gives each process the
illusion of a full memory address space that it has
completely for itself.

35



Agenda

* Introduction to Virtual Memory

36



“Bare” 5-Stage Pipeline

Physical Physical

Address | |nst. Decod Address | Data
‘| Cache ecode ‘| Cache
Physical "| Memory Controller ) Physical
Address Address

| Physical Address

Main Memory (DRAM)

* In a bare machine, the only kind of address is a
physical address

37



Dynamic Address Translation

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
=> base register — add offset to each address

Protection
Independent programs should not affect
each other inadvertently
=> bound register — check range of access

(Note: Multiprogramming drives requirement for

resident supervisor (OS) software to manage context

switches between multiple programs)

prog2

OS

Physical Memory



Virtual Memory

Next level in the memory hierarchy:

— Provides program with illusion of a very large main memory:

— Working set of “pages” reside in main memory - others reside on disk.

Also allows OS to share memory, protect programs from each
other

Today, more important for protection than just another level
of memory hierarchy

Each process thinks it has all the memory to itself

(Historically, it predates caches)

39



Virtual vs. Physical Addresses

Sample Layout
(32 bit addresses)

Processor (& Caches) ~ FFFF FFFFhex i _stacL L Memory (DRAM)

Control _[ " 7))
v currently unused but (7, 3
‘ available memory 2 _’6
Datapath g S
<

e | _ )2 S =—"

heap S S =
ne g 2
S -

code
~ 0000 0000,
Many of these (software & hardware cores) One main memory

* Processes use virtual addresses, e.g., O ... Oxffff,ffff

— Many processes, all using same (conflicting) addresses

* Memory uses physical addresses (also, e.g., O ... Oxffff,ffff)
* Memory manager maps virtual to physical addresses

40



Simple Base and Bound Translation

SE— Segment Length

Bounds
— Violation?

Physical
Address

Logical
Address

Base Physical Address

Program
Address Space

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

41
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Address Spaces

* Address space = set of addresses for all available
memory locations

* Now, two kinds of memory addresses:

— Virtual Address Space
e Set of addresses that the user program knows about

— Physical Address Space
* Set of addresses that map to actual physical locations in memory
* Hidden from user applications

* Memory manager maps between these two address
spaces

42



Base and Bound Machine

Bounds Violation? Bounds Violation?

Logical
Address

Logical
Address

Inst. Decode o3t
Cache Cache
A Physical A
Address
Physical Physical
Address Address
» Memory Controller <

iPhysicaI Address

Main Memory (DRAM)

[ Can fold addition of base register into (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers) |
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Memory Fragmentation

Users 4 & 5 Users 2 & 5
arrive leave
user 1 user 1+
user 2 '
user 4 :
user 4§
user 5

As users come and go, the storage is “fragmented”.

Therefore, at some stage programs have to be moved
around to compact the storage.

44



Paged Memory Systems

* Processor-generated address can be split into:

page number offset

* A page table contains the physical address of the base of each page

1
0 0 0
1 1
2 2
3 3 — 3
Address Space Page Table
of User-1 of User-1 2

Physical
Memory

Page tables make it possible to store the
pages of a program non-contiguously.
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Private Address Space per User

User 1

Page Table

User 2 W%
W Page Table
User 3
Page Table

e Each user has a page table
e Page table contains an entry for each user page

46



Where Should Page Tables Reside?

e Space required by the page tables (PT) is proportional
to the address space, number of users, ...

= Too large to keep in cpu registers

* |dea: Keep PTs in the main memory

— Needs one reference to retrieve the page base address and
another to access the data word

=> doubles the number of memory references!

47



Page Tables in Physical Memory

User 1 Virtual
Address Space

.

User 2 Virtual
Address Space

Physical Memory

48



In Conclusion

* Once we have a basic machine, it’s mostly up to the
OS to use it and define application interfaces.

* Hardware helps by providing the right abstractions
and features (e.g., Virtual Memory, 1/0).



