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Meltdown and Spectre

• Hardware vulnerability
• Affecting Intel x86 microprocessors,

IBM POWER processors, and some
ARM-based microprocessors

• All Operating Systems effected!
• They are considered "catastrophic" by security analysts!
• Allow to read all memory (e.g. from other process or other 

Virtual Machines (e.g. other users data on Amazon cloud 
service!) )

• Towards the end of this CA course you can understand the 
basics of how Meltdown and Spectre work. Keywords:
– Virtual Memory; Protection Levels; Instruction Pipelining; 

Speculative Execution; CPU Caching; 2



Meltdown & Spectre

• KAISER = KPTI: Kernel page-table isolation

• Disclaimer: Most details that follow are 
oversimplified!!!
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VM: Address Translation & Protection

• Every instruction and data access needs address 
translation and protection checks

A good VM design needs to be fast (~ one cycle) and 
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write



OS: Kernel Memory Space
• User processes have memory pages in the kernel 

space (managed by kernel, but with user data, e.g. 
network package received) 
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KPTI: Meltdown only!

• Without KPTI:
– Executing user-space code (applications), Linux keeps 

entire kernel memory mapped in page tables (but 
protected from access) 

– Advantage: System call into the kernel or 
Interrupt: kernel page tables are always present => 
most context-switching overheads (TLB flush, page-
table swapping, etc.) can be avoided!

• With KPTI: 5% - 30% slower (depending on 
workload: more syscalls (e.g. Databases) slower)
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Three Cve’s

• Common Vulnerabilities and Exposures (CVE) system 
provides a reference-method for publicly 
known information-security vulnerabilities and exposures

• CVE-2017-5715 - aka Spectre, branch target injection
• CVE-2017-5753 - aka Spectre, bounds check bypass
• CVE-2017-5754 - aka Meltdown, rogue data cache load, 

memory access permission check performed after kernel 
memory read



AttackerDomain of Victim

Secret

Channel
TransmitterAccess

Secret

Receiver

Attack Schema

1. Create a channel
2. Create the transmitter
3. Launch the transmitter
4. Access the secret

Material from MIT: Adam Belay, Srini Devadas, Joel Emer



Control Speculation

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct direction Mis-speculated 
direction

Sequential 
Instruction
Execution

Non-Sequential 
Instruction
Execution

Transmitter Code

Instruction to launch transmitter



Domain of Victim

Transmitter

Secret

Receiver
ChannelAccess

Secret

Attacker

Pre-existing (RSA example)
Written by attacker (Meltdown)
Synthesized out of existing victim code by attacker (Spectre style)

Building a Transmitter



Meltdown and Spectre Attack 
Examples



Attack: Mis-speculation exfiltrates
secrets through cache

Transmitter
Cache

Receiver

Covert Channel

Side Channel

Secret

Speculative
Execution

Normal
Execution



Meltdown
Problem: Attacker can influence speculative control flow
Bug: Speculative execution not subject to page 
permission checks
Attack: User code can read kernel data (secret)

Three steps:
1. Setup: flush the cache
2. Transmit: force speculation that depends on secret
3. Receive: measure cache timings



Meltdown example
Setup:
clflush(timing_ptr[guess]);

Transmit:
timing_ptr[*kernel_addr];

Receive:
mfence();
s = rdtsc(); *timing_ptr[guess];
e = rdtscp();
if (e - s < CACHE_MISS_THRESHOLD)

printf(“guess was right!\n”);

Page Fault
May still read 
*kernel_addr (speculatively)

Pointing to 
secret data!



Code explained

• clflush(ptr): Cache Line Flush (remove from $)
• mfence(): in out-of-order processors ensure 

that all prior memory operations have been 
finished

• X86: Time Stamp Counter (TSC) 64-bit register: 
number of clock cycles since reset
– rdtsc(): read TSC 
– rdtscp(): read TSC NOW (without out-of-order re-

ordering)
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Spectre

• Problem: Attacker can influence speculative 
control flow (same as before)

• Attack: Exfiltrate secrets within a process 
address space (e.g. a web browser). Can also 
be used to attack the kernel.

• Could use attacker provided code (JIT) or 
could co-opt existing program code

• Same three steps! Different setup and 
transmitters.



Spectre examples

Transmit - Bounds Check Bypass:
if (x < array1_size)

array2[array1[x] * 256];



Spectre examples

Transmit - Bounds Check Bypass:
if (x < array1_size)

array2[array1[x] * 256];

Transmit - Branch Target Injector:
fnptr_t foo = choose_function();
foo(bar);



Fixing those bugs

• KPTI for meltdown (speed penalty!)

• Software: Serialize code (no out of order)

• Patches for Operating Systems

• BIOS patches:

– Patch the firmware of the processors =>

different micro-code get’s executed (microcode fixes)

– Old processors without patches, e.g.:

– Intel processors that will never get updates:

• Bloomfield (2011), Bloomfield Xeon, Clarksfield (2012), 

Gulftown, Harpertown Xeon C0 and E0, Jasper Forest, 

Penryn/QC, SoFIA 3GR, Wolfdale (2011), Wolfdale Xeon, 

Yorkfield (2011), and Yorkfield Xeon.

• Wait for new hardware w/o those bugs…
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New School Computer Architecture (1/3)
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Personal 
Mobile 
Devices
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New School Computer Architecture (2/3)
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New School Computer Architecture (3/3)



Old Machine Structures
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New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates functioning in 

parallel at same time
• Programming Languages 25
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CA is NOT about C Programming

• It’s about the hardware-software interface
– What does the programmer need to know to 

achieve the highest possible performance
• Languages like C are closer to the underlying 

hardware, unlike languages like Python! 
– Allows us to talk about key hardware features in 

higher level terms
– Allows programmer to explicitly harness 

underlying hardware parallelism for high 
performance: “programming for performance”
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Great Ideas in Computer Architecture

1. Design for Moore’s Law
2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy
6. Performance via 

Parallelism/Pipelining/Prediction
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Powers of Ten inspired CA Overview

• Going Top Down cover 3 Views
1. Architecture (when possible)
2. Physical Implementation of that architecture
3. Programming system for that architecture 

and implementation (when possible)

• See http://www.powersof10.com/film
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Earth
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The Dalles, Oregon
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104 meters



The Dalles, Oregon
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104 meters



Google’s Oregon WSC
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103 meters



Google’s Oregon WSC
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Google Warehouse

• 90 meters by 75 meters, 10 Megawatts
• Contains 40,000 servers, 190,000 disks
• Power Utilization Effectiveness: 1.23
– 85% of 0.23 overhead goes to cooling losses
– 15% of 0.23 overhead goes to power losses

• Contains 45, 40-foot long containers
– 8 feet x 9.5 feet x 40 feet

• 30 stacked as double layer, 15 as single layer
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Containers in WSCs
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Google Container
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Google Container

• 2 long rows, each  with 29 
racks

• Cooling below raised floor
• Hot air returned behind 

racks
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Equipment Inside a Container
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Server (in rack 
format):

7 foot Rack:  servers + Ethernet local 
area network switch in middle (“rack 
switch”)

Array (aka cluster):  
server racks + larger local 
area network switch 
(“array switch”) 10X 
faster => cost 100X: cost 
f(N2)



Google Rack
• Google rack with 20 

servers + Network Switch 
in the middle

• 48-port 1 Gigabit/sec 
Ethernet switch every 
other rack

• Array switches connect to 
racks via multiple 1 Gbit/s
links

• 2 datacenter routers 
connect to array switches 
over 10 Gbit/s links
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Great Ideas in Computer Architecture
1. Design for Moore’s Law

-- WSC, Container, Rack
2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy

-- Multiple WSCs, Multiple Racks, Multiple Switches
5. Memory Hierarchy
6. Performance via 

Parallelism/Pipelining/Prediction
-- Task level Parallelism, Data Level Parallelism
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Google Server Internals
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Google Board Details

• Supplies only 12 volts
• Battery per board vs. 

large battery room
– Improves PUE: 99.99% 

efficient local battery vs
94% for battery room

• 2 SATA Disk Drives
– 1 Terabyte capacity each
– 3.5 inch disk drive
– 7200 RPM

• 2 AMD Opteron
Microprocessors
– Dual Core, 2.2 GHz

• 8 DIMMs
– 8 GB DDR2 DRAM

• 1 Gbit/sec Ethernet 
Network Interface Card
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Programming Multicore 
Microprocessor: OpenMP

#include <omp.h>
#include <stdio.h>
static long num_steps = 100000; 
int value[num_steps]; 
int reduce() 
{ int i; int sum = 0; 
#pragma omp parallel for private(x) reduction(+:sum)

for (i=1; i<= num_steps; i++){ 
sum = sum + value[i]; 

} 
}
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Great Ideas in Computer Architecture
1. Design for Moore’s Law

-- More transistors = Multicore + SIMD
2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy

-- More transistors = Cache Memories
6. Performance via Parallelism/Pipelining/

Prediction
-- Thread-level Parallelism
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AMD Opteron Microprocessor
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AMD Opteron Microarchitecture

72 physical 
registers
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AMD Opteron Pipeline Flow
• For integer operations

− 12 stages (Floating Point is 17 stages)
−Up to 106 RISC-ops in progress
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AMD Opteron Block Diagram
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AMD Opteron Microprocessor
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AMD Opteron Core
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Programming One Core: 
C with Intrinsics 

void mmult(int n, float *A, float *B, float *C)
{
for ( int i = 0; i < n; i+=4 )
for ( int j = 0; j < n; j++ ) 
{
__m128 c0 = _mm_load_ps(C+i+j*n);
for( int k = 0; k < n; k++ )
c0 = _mm_add_ps(c0, _mm_mul_ps(_mm_load_ps(A+i+k*n),  

_mm_load1_ps(B+k+j*n)));
_mm_store_ps(C+i+j*n, c0);

}
}



Inner loop from gcc –O -S
Assembly snippet from innermost loop:

movaps (%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm8
movaps 16(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm7
movaps 32(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm6
movaps 48(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm5



Great Ideas in Computer Architecture
1. Design for Moore’s Law
2. Abstraction to Simplify Design

-- Instruction Set Architecture, Micro-operations
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy
6. Performance via 

Parallelism/Pipelining/Prediction
-- Instruction-level Parallelism (superscalar, pipelining)
-- Data-level Parallelism
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SIMD Adder

• Four 32-bit adders that 
operate in parallel
– Data Level Parallelism
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One 32-bit Adder
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1 bit of 32-bit Adder
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Complementary MOS Transistors 
(NMOS and PMOS) of NAND Gate

3v

X Y

0v

Z
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Physical Layout of NAND Gate

58

10-7 meters
10

0 
na

no
m

et
er

s



Scanning Electron Microscope
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Block Diagram of Static RAM
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1 Bit SRAM in 6 Transistors
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Physical Layout of SRAM Bit
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SRAM Cross Section
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DIMM Module

• DDR = Double Data Rate
– Transfers bits on Falling AND Rising Clock Edge

• Has Single Error Correcting, Double Error 
Detecting Redundancy (SEC/DED)
– 72 bits to store 64 bits of data
– Uses “Chip kill” organization so that if single 

DRAM chip fails can still detect failure
• Average server has 22,000 correctable errors 

and 1 uncorrectable error per year 

64



DRAM Bits
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DRAM Cell in Transistors
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Physical Layout of DRAM Bit

67



Cross Section of DRAM Bits
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AMD Opteron Dependability

• L1 cache data is SEC/DED protected
• L2 cache and tags are SEC/DED protected
• DRAM is SEC/DED protected with chipkill
• On-chip and off-chip ECC protected arrays include 

autonomous, background hardware scrubbers
• Remaining arrays are parity protected 

– Instruction cache, tags and TLBs
– Data tags and TLBs
– Generally read only data that can be recovered 
from lower levels
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• The blocked version of the i-j-k algorithm is written 
simply as (A,B,C are submatricies of a, b, c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)
for (k=0;k<N/r;k++)
C[i][j] += A[i][k]*B[k][j]

– r = block (sub-matrix) size (Assume r divides N)
– X[i][j] =  a sub-matrix of X, defined by block row i and 

block column j

Programming Memory Hierarchy: 
Cache Blocked Algorithm



Great Ideas in Computer Architecture
1. Design for Moore’s Law

-- Higher capacities caches and DRAM

2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy

-- Parity, SEC/DEC
5. Memory Hierarchy

-- Caches, TLBs

6. Performance via Parallelism/Pipelining/Prediction
-- Data-level Parallelism
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Course Summary

• As the field changes, Computer Architecture 
courses change, too!

• It is still about the software-hardware 
interface
– Programming for performance!
– Parallelism: Task-, Thread-, Instruction-, and Data-

MapReduce, OpenMP, C, SSE instrinsics
– Understanding the memory hierarchy and its 

impact on application performance

72


