
CS 110
Computer Architecture

Course Summary

Instructor:
Sören Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca

Meltdown and Spectre

• Hardware vulnerability
• Affecting Intel x86 microprocessors,

IBM POWER processors, and some
ARM-based microprocessors

• All Operating Systems effected!
• They are considered "catastrophic" by security analysts!
• Allow to read all memory (e.g. from other process or other

Virtual Machines (e.g. other users data on Amazon cloud
service!))

• Towards the end of this CA course you can understand the
basics of how Meltdown and Spectre work. Keywords:
– Virtual Memory; Protection Levels; Instruction Pipelining;

Speculative Execution; CPU Caching; 2

Meltdown & Spectre

• KAISER = KPTI: Kernel page-table isolation

• Disclaimer: Most details that follow are
oversimplified!!!

3

4

VM: Address Translation & Protection

• Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

OS: Kernel Memory Space
• User processes have memory pages in the kernel

space (managed by kernel, but with user data, e.g.
network package received)

5

6

KPTI: Meltdown only!

• Without KPTI:
– Executing user-space code (applications), Linux keeps

entire kernel memory mapped in page tables (but
protected from access)

– Advantage: System call into the kernel or
Interrupt: kernel page tables are always present =>
most context-switching overheads (TLB flush, page-
table swapping, etc.) can be avoided!

• With KPTI: 5% - 30% slower (depending on
workload: more syscalls (e.g. Databases) slower)

7

Three Cve’s

• Common Vulnerabilities and Exposures (CVE) system
provides a reference-method for publicly
known information-security vulnerabilities and exposures

• CVE-2017-5715 - aka Spectre, branch target injection
• CVE-2017-5753 - aka Spectre, bounds check bypass
• CVE-2017-5754 - aka Meltdown, rogue data cache load,

memory access permission check performed after kernel
memory read

AttackerDomain of Victim

Secret

Channel
TransmitterAccess

Secret

Receiver

Attack Schema

1. Create a channel
2. Create the transmitter
3. Launch the transmitter
4. Access the secret

Material from MIT: Adam Belay, Srini Devadas, Joel Emer

Control Speculation

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct direction Mis-speculated
direction

Sequential
Instruction
Execution

Non-Sequential
Instruction
Execution

Transmitter Code

Instruction to launch transmitter

Domain of Victim

Transmitter

Secret

Receiver
ChannelAccess

Secret

Attacker

Pre-existing (RSA example)
Written by attacker (Meltdown)
Synthesized out of existing victim code by attacker (Spectre style)

Building a Transmitter

Meltdown and Spectre Attack
Examples

Attack: Mis-speculation exfiltrates
secrets through cache

Transmitter
Cache

Receiver

Covert Channel

Side Channel

Secret

Speculative
Execution

Normal
Execution

Meltdown
Problem: Attacker can influence speculative control flow
Bug: Speculative execution not subject to page
permission checks
Attack: User code can read kernel data (secret)

Three steps:
1. Setup: flush the cache
2. Transmit: force speculation that depends on secret
3. Receive: measure cache timings

Meltdown example
Setup:
clflush(timing_ptr[guess]);

Transmit:
timing_ptr[*kernel_addr];

Receive:
mfence();
s = rdtsc(); *timing_ptr[guess];
e = rdtscp();
if (e - s < CACHE_MISS_THRESHOLD)

printf(“guess was right!\n”);

Page Fault
May still read
*kernel_addr (speculatively)

Pointing to
secret data!

Code explained

• clflush(ptr): Cache Line Flush (remove from $)
• mfence(): in out-of-order processors ensure

that all prior memory operations have been
finished

• X86: Time Stamp Counter (TSC) 64-bit register:
number of clock cycles since reset
– rdtsc(): read TSC
– rdtscp(): read TSC NOW (without out-of-order re-

ordering)

16

Spectre

• Problem: Attacker can influence speculative
control flow (same as before)

• Attack: Exfiltrate secrets within a process
address space (e.g. a web browser). Can also
be used to attack the kernel.

• Could use attacker provided code (JIT) or
could co-opt existing program code

• Same three steps! Different setup and
transmitters.

Spectre examples

Transmit - Bounds Check Bypass:
if (x < array1_size)

array2[array1[x] * 256];

Spectre examples

Transmit - Bounds Check Bypass:
if (x < array1_size)

array2[array1[x] * 256];

Transmit - Branch Target Injector:
fnptr_t foo = choose_function();
foo(bar);

Fixing those bugs

• KPTI for meltdown (speed penalty!)

• Software: Serialize code (no out of order)

• Patches for Operating Systems

• BIOS patches:

– Patch the firmware of the processors =>

different micro-code get’s executed (microcode fixes)

– Old processors without patches, e.g.:

– Intel processors that will never get updates:

• Bloomfield (2011), Bloomfield Xeon, Clarksfield (2012),

Gulftown, Harpertown Xeon C0 and E0, Jasper Forest,

Penryn/QC, SoFIA 3GR, Wolfdale (2011), Wolfdale Xeon,

Yorkfield (2011), and Yorkfield Xeon.

• Wait for new hardware w/o those bugs…
20

New School Computer Architecture (1/3)

21

Personal
Mobile
Devices

22

New School Computer Architecture (2/3)

23

New School Computer Architecture (3/3)

Old Machine Structures

24

CA

I/O systemProcessor

Compiler
Operating
System
(Mac OSX)

Application (ex: browser)

Digital Design
Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates functioning in

parallel at same time
• Programming Languages 25

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Leverage
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project 1

Project 3

Project 2

CA is NOT about C Programming

• It’s about the hardware-software interface
– What does the programmer need to know to

achieve the highest possible performance
• Languages like C are closer to the underlying

hardware, unlike languages like Python!
– Allows us to talk about key hardware features in

higher level terms
– Allows programmer to explicitly harness

underlying hardware parallelism for high
performance: “programming for performance”

26

Great Ideas in Computer Architecture

1. Design for Moore’s Law
2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy
6. Performance via

Parallelism/Pipelining/Prediction

27

Powers of Ten inspired CA Overview

• Going Top Down cover 3 Views
1. Architecture (when possible)
2. Physical Implementation of that architecture
3. Programming system for that architecture

and implementation (when possible)

• See http://www.powersof10.com/film

28

http://www.powersof10.com/film

Earth

29

107 meters

The Dalles, Oregon

30

104 meters

The Dalles, Oregon

31

104 meters

Google’s Oregon WSC

32

103 meters

Google’s Oregon WSC

33

104 meters

103 meters102 meters10
 k

ilo
m

et
er

s

Google Warehouse

• 90 meters by 75 meters, 10 Megawatts
• Contains 40,000 servers, 190,000 disks
• Power Utilization Effectiveness: 1.23
– 85% of 0.23 overhead goes to cooling losses
– 15% of 0.23 overhead goes to power losses

• Contains 45, 40-foot long containers
– 8 feet x 9.5 feet x 40 feet

• 30 stacked as double layer, 15 as single layer

34

Containers in WSCs

35

102 meters
10

0
m

et
er

s

Google Container

36

101 meters

Google Container

• 2 long rows, each with 29
racks

• Cooling below raised floor
• Hot air returned behind

racks

37

100 meters
10

 m
et

er
s

Equipment Inside a Container

38

Server (in rack
format):

7 foot Rack: servers + Ethernet local
area network switch in middle (“rack
switch”)

Array (aka cluster):
server racks + larger local
area network switch
(“array switch”) 10X
faster => cost 100X: cost
f(N2)

Google Rack
• Google rack with 20

servers + Network Switch
in the middle

• 48-port 1 Gigabit/sec
Ethernet switch every
other rack

• Array switches connect to
racks via multiple 1 Gbit/s
links

• 2 datacenter routers
connect to array switches
over 10 Gbit/s links

39

100 meters
1

m
et

er

Great Ideas in Computer Architecture
1. Design for Moore’s Law

-- WSC, Container, Rack
2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy

-- Multiple WSCs, Multiple Racks, Multiple Switches
5. Memory Hierarchy
6. Performance via

Parallelism/Pipelining/Prediction
-- Task level Parallelism, Data Level Parallelism

40

Google Server Internals

41

Google Server

10-1 meters
10

 ce
nt

im
et

er
s

Google Board Details

• Supplies only 12 volts
• Battery per board vs.

large battery room
– Improves PUE: 99.99%

efficient local battery vs
94% for battery room

• 2 SATA Disk Drives
– 1 Terabyte capacity each
– 3.5 inch disk drive
– 7200 RPM

• 2 AMD Opteron
Microprocessors
– Dual Core, 2.2 GHz

• 8 DIMMs
– 8 GB DDR2 DRAM

• 1 Gbit/sec Ethernet
Network Interface Card

42

Programming Multicore
Microprocessor: OpenMP

#include <omp.h>
#include <stdio.h>
static long num_steps = 100000;
int value[num_steps];
int reduce()
{ int i; int sum = 0;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=1; i<= num_steps; i++){
sum = sum + value[i];

}
}

43

Great Ideas in Computer Architecture
1. Design for Moore’s Law

-- More transistors = Multicore + SIMD
2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy

-- More transistors = Cache Memories
6. Performance via Parallelism/Pipelining/

Prediction
-- Thread-level Parallelism

44

AMD Opteron Microprocessor

45

10-2 meters
ce

nt
im

et
er

s

AMD Opteron Microarchitecture

72 physical
registers

46

AMD Opteron Pipeline Flow
• For integer operations

− 12 stages (Floating Point is 17 stages)
−Up to 106 RISC-ops in progress

47

AMD Opteron Block Diagram

48

AGUAGU

Int Decode & Rename

FADD FMISCFMUL

44-entry
Load/Store
Queue

36-entry FP scheduler

FP Decode & Rename

ALU

AGU

ALU

MULT

ALU

Res Res Res

L1
Icache
64B

L1
Dcache
64KB

Fetch
Branch
Prediction

Instruction Control Unit (72 entries)

Fastpath Microcode Engine
Scan/Align/Decode

µops

AMD Opteron Microprocessor

49

10-2 meters
ce

nt
im

et
er

s

AMD Opteron Core

50

10-3 meters
m

ill
im

et
er

s

Programming One Core:
C with Intrinsics

void mmult(int n, float *A, float *B, float *C)
{
for (int i = 0; i < n; i+=4)
for (int j = 0; j < n; j++)
{
__m128 c0 = _mm_load_ps(C+i+j*n);
for(int k = 0; k < n; k++)
c0 = _mm_add_ps(c0, _mm_mul_ps(_mm_load_ps(A+i+k*n),

_mm_load1_ps(B+k+j*n)));
_mm_store_ps(C+i+j*n, c0);

}
}

Inner loop from gcc –O -S
Assembly snippet from innermost loop:

movaps (%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm8
movaps 16(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm7
movaps 32(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm6
movaps 48(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm5

Great Ideas in Computer Architecture
1. Design for Moore’s Law
2. Abstraction to Simplify Design

-- Instruction Set Architecture, Micro-operations
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy
6. Performance via

Parallelism/Pipelining/Prediction
-- Instruction-level Parallelism (superscalar, pipelining)
-- Data-level Parallelism

53

SIMD Adder

• Four 32-bit adders that
operate in parallel
– Data Level Parallelism

54

One 32-bit Adder

55

1 bit of 32-bit Adder

56

Complementary MOS Transistors
(NMOS and PMOS) of NAND Gate

3v

X Y

0v

Z

57

x y z

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts
3 volts

3 volts

3 volts

3 volts

3 volts

0 volts

NAND gate

Physical Layout of NAND Gate

58

10-7 meters
10

0
na

no
m

et
er

s

Scanning Electron Microscope

59

10-7 meters

Cross Section
Top View

10
0

na
no

m
et

er
s

Block Diagram of Static RAM

60

10-6 meters

1 Bit SRAM in 6 Transistors

61

Physical Layout of SRAM Bit

62

10-7 meters
10

0
na

no
m

et
er

s

SRAM Cross Section

63

10-7 meters
10

0
na

no
m

et
er

s

DIMM Module

• DDR = Double Data Rate
– Transfers bits on Falling AND Rising Clock Edge

• Has Single Error Correcting, Double Error
Detecting Redundancy (SEC/DED)
– 72 bits to store 64 bits of data
– Uses “Chip kill” organization so that if single

DRAM chip fails can still detect failure
• Average server has 22,000 correctable errors

and 1 uncorrectable error per year

64

DRAM Bits

65

10-6 meters
1

m
icr

on

DRAM Cell in Transistors

66

Physical Layout of DRAM Bit

67

Cross Section of DRAM Bits

68

10-7 meters

10
0

na
no

m
et

er
s

AMD Opteron Dependability

• L1 cache data is SEC/DED protected
• L2 cache and tags are SEC/DED protected
• DRAM is SEC/DED protected with chipkill
• On-chip and off-chip ECC protected arrays include

autonomous, background hardware scrubbers
• Remaining arrays are parity protected

– Instruction cache, tags and TLBs
– Data tags and TLBs
– Generally read only data that can be recovered
from lower levels

69

• The blocked version of the i-j-k algorithm is written
simply as (A,B,C are submatricies of a, b, c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)
for (k=0;k<N/r;k++)
C[i][j] += A[i][k]*B[k][j]

– r = block (sub-matrix) size (Assume r divides N)
– X[i][j] = a sub-matrix of X, defined by block row i and

block column j

Programming Memory Hierarchy:
Cache Blocked Algorithm

Great Ideas in Computer Architecture
1. Design for Moore’s Law

-- Higher capacities caches and DRAM

2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy

-- Parity, SEC/DEC
5. Memory Hierarchy

-- Caches, TLBs

6. Performance via Parallelism/Pipelining/Prediction
-- Data-level Parallelism

71

Course Summary

• As the field changes, Computer Architecture
courses change, too!

• It is still about the software-hardware
interface
– Programming for performance!
– Parallelism: Task-, Thread-, Instruction-, and Data-

MapReduce, OpenMP, C, SSE instrinsics
– Understanding the memory hierarchy and its

impact on application performance

72

