
Computer Architecture I Final June 19 2019

Computer Architecture I Final

Chinese Name:

Pinyin Name:

Student ID:

E-Mail ... @shanghaitech.edu.cn:

Question Points Score

1 1

2 14

3 7

4 5

5 11

6 8

7 6

8 7

9 7

10 20

11 12

12 2

Total: 100

• This test contains 17 numbered pages, in-
cluding the cover page, printed on both
sides of the sheet.

• We will use Gradescope for grading, so
only answers filled in at the obvious
places will be used.

• Use the provided blank paper for calcula-
tions and then copy your answer here.

• Please turn off all cell phones, smart-
watches, and other mobile devices. Re-
move all hats and headphones. Put every-
thing in your backpack. Place your back-
packs, laptops, and jackets out of reach.

• You have 120 minutes to complete this exam. The exam is closed book; no computers,
phones, or calculators are allowed. You may use two A4 pages (front and back) of handwrit-
ten notes in addition to the provided RISC-V green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you
can. We will deduct points if your solution is far more complicated than necessary. When
we provide a blank, please fit your answer within the space provided.

• Do NOT start reading the questions/ open the exam until we tell you so!

• Unless otherwise stated, always assume a 32-bit machine for this exam.

1.1 First Task (worth one point): Fill in you name
Fill in your name, email and student ID on the front page and your ShanghaiTech email on
top of every following page (without @shanghaitech.edu.cn) (so write your email in total
17 times).

Email: Final, Page 2 of 17 Computer Architecture I 2019

2. General questions
(a)2 Using IEEE 754 representation, what decimal number is encoded?

0x41860000→
Convert the following decimal number to single precision IEEE 754 floating point format
(to hexadecimal form):

-21.75→ 0x

Solution: 16.75 0xC1AE0000

(b)2 Convert 2333ten

To Binary

To Hexadecimal

Solution: 100100011101 91d

(c)2 How does the CPU communicate with these I/O devices (as introduced in the lecture)?

Mouses: Disks:

Solution: Polling Interrupt

Unicode is a powerful coding scheme that can represent almost every character, e.g. the
codepoint for emoji “Ear of Maize” () is U+1F33D. However, it takes too much space
for characters like ASCII characters. Thus, variable-length encoding schemes like UTF-8
were developed. In the following 3 questions, suppose address space grows from left to
right, i.e. low address is at left and high address is at right.

(d)2 The corn emoji is represented by a two-byte surrogate pair: 0xd83c and 0xdf3d in UTF-
16. How are they stored in hexadecimal in a big-endian machine and a little-endian
machine? Choose the correct answer.

A. 0xd8 0x3c 0xdf 0x3d B. 0xdf 0x3d 0xd8 0x3c
C. 0x3d 0xdf 0x3c 0xd8 D. 0x3c 0xd8 0x3d 0xdf

Big-endian: Little-endian:

Solution: Big-endian: A Little-endian: D

Consider the following C program:

Email: Final, Page 3 of 17 Computer Architecture I 2019

1 #include <stdio.h>
2 #include <stdint.h>
3 #define SLL(x,k) (x << k)
4 #define XOR(x,y) (x ˆ y)
5

6 void f (char *s, float *x){
7 while (*s) {
8 printf("%d.", (*s++)-’a’);
9 }

10 printf("%f\n", *x);
11 }
12

13 int main (){
14 int i = SLL (2,2) - XOR (1,2);
15 char *p = "it_is_weird";
16 float x = 6.25e-1;
17 f(p, &x);
18 return 0;
19 }

(e)2 Which part of memory do the following variables belong to? Choose the correct answer
from ”stack”, ”heap” or ”data”.

"it is weird": p:

Solution: data stack

(f)2 What is the value of i?

Solution: 5

(g)2 What is the type of &x in line 17?

Solution: float *

3. SDS

(a)3 Rebuild this circuit with the fewest gates in the box, using only AND, OR and NOT gates:

Email: Final, Page 4 of 17 Computer Architecture I 2019

Solution: Its a NAND gate: (not (and A B))

(b)4 For the circuit below, assume:

• setup time is 15ns
• hold time is 30ns
• AND gate delay is 10ns

If the clock rate is 10 MHz and x updates 25ns after the rising edge of the clock, what are
the minimum and maximum values for the clk-to-Q delay to ensure proper functionality?

Min: ns

Max: ns

Solution: Min:20ns, Max:75ns

Email: Final, Page 5 of 17 Computer Architecture I 2019

4. CALL

(a)2 Among all four types of addresses (1. PC-Relative Address; 2. Absolute Function Ad-
dress; 3. External Function Reference; 4. Static Data Reference), which of the types need
to be relocated in the linker?

Solution: 2, 3, 4

(b)3 Please give the correct order of the loader.

1. Copies arguments passed to the program onto the stack
2. Jumps to start-up routine that copies programs arguments from stack to registers and

sets the PC
3. Creates new address space for program large enough to hold text and data segments,

along with a stack segment
4. Copies instructions and data from executable file into the new address space
5. Reads executable files header to determine size of text and data segments
6. Initializes machine registers

Solution: 5 3 4 1 6 2

5. Datapathology

Consider adding the following instruction to RISC-V:

Instruction Operation
cse rd, rs1, rs2 if (R[rs1]!= R[rs2]) R[rd] = R[rs1] - R[rs2];

else Mem[R[rd]] = 1;

(a)1 What type of instruction will cse be? If multiple formats work, choose all that apply.
a. R-type b. I-type c. S-type d. U-type

(a) a

(b)6 Implement cse in the datapath. Choose all correct implementations for (i), (ii), (iii).
Note 1: The control signal CSE is 1 if and only if the instruction is cse, 0 otherwise.
Note 2: The RegFile in the below datapath has one additional out-port Reg[rd], which
outputs the value at AddrD from the RegFile.
Make sure the functions of the original RISC-V CPU are still preserved!

Email: Final, Page 6 of 17 Computer Architecture I 2019

i. Select the correct component to fill in blank (i) in the Execution Stage.

a b c d e

ii. Select the correct component to fill in blank (ii) in the Memory Stage.

a b c d e

iii. Select the correct component to fill in blank (iii) in the Write Back Stage.

a b c d e

Solution: (i)b,c; (ii)d; (iii)b

(c)4 Fill in the correct control signals for cse. You may assume the immSel signal is correctly
implemented. The possible values for each signal are given below. If the exact value of

Email: Final, Page 7 of 17 Computer Architecture I 2019

that signal doesn’t matter, then select Don’t Care (X). If it is possible for a signal to be
”Don’t Care”, then select ”Don’t Care” instead of a more specific value (e.g. a value of
(0) or (1) is correct when the signal could instead be (X)).
(0)Signal=0; (1)Signal=1; (2)Signal=2; (R)Write Disabled; (W)Write Enabled;
(X)Don’t Care; (A)AND; (B)OR; (C)ADD; (D)SUB

CSE PCSel RegWEn BrUn BSel ASel ALUSel MemRW WBSel
1

Solution: (0);(R);(X);(0);(0);(0);(D);(R);(1)

6. Pipelining
Consider the standard 5-stage pipelined RISC-V CPU with instruction fetch, register read,
ALU, memory, and register write stages. Register writes happen before register reads in the
same clock cycle, branch comparison is done during the register read stage, there is a branch
delay slot, and forwarding is implemented.
For the following stream of instructions, assume that t0 is not equal to 0, so the branch is not
taken.

1 start: lw t0 0(a0)
2 beq t0, 0, end
3 addi t0, t0, 10
4 sw t0 0(a0)
5 end:

Logic in each stage of the pipeline has the following timing:

Instruction
Fetch

Register
Read

ALU Memory Register
Write

150ps 100ps 100ps 200ps 100ps

The pipelining registers in between stages have the following timing:

Clock-to-Q Hold time Setup
30ps 20ps 30ps

(a)6 For each pair of instructions, write down whether the CPU needs to be stalled for the
execution of the second instruction, and if so, for how many cycles.
(i)

1 start: lw $t0 0($a0)
2 beq $t0, 0, end

Email: Final, Page 8 of 17 Computer Architecture I 2019

(ii)

1 beq $t0, 0, end
2 addi $t0, $t0, 10

(iii)

1 addi $t0, $t0, 10
2 sw $t0 0($a0)

Solution: (i) stall for 2 cycles; (ii) no stall (iii)no stall

(b)2 What is the minimum clock period, in picoseconds, with which the processor can run?

Solution: 260

7. Superscalar Processors
(a)2 Calculate the CPI (cycle per instruction) of a program with following parameters.

Operation Freqi CPIi
ALU 50% 2
Load 20% 6
Store 10 % 4

Branch 20 % 3

Solution: 50%× 2 + 20%× 6 + 10%× 4 + 20%× 3 = 3.2 (cycles).

(b)4 Here is a simplified datapath schematic diagram of a superscalar processor. Fill in the
following blanks.

Email: Final, Page 9 of 17 Computer Architecture I 2019

1. Fetch buffer sits between stage and stage .

2. In each cycle, fetch two instructions; issue both simultaneously if one is

and other is .

Solution: 1, 2; integer/memory, floating point

8. Vectorization
(a)4 You are required to compute the sum of all elements in a vector, that is sum =

∑n
i=0 ai.

The int vector is stored in an array whose address is aligned to a multiple of 16 bytes.
Suppose n is a multiple of 4 and the sum does not cause overflow. Finish the following C
code using the SSE Intrinsics. All variables have been declared for you and you should
not declare more variables. You might find the following intrinsics useful:

• __m128i _mm_add_epi32 (__m128i a, __m128i b): add packed 32-bit in-
tegers
• __m128i _mm_srli_si128 (__m128i a, int imm8): shift a right by imm8

bytes while shifting in zeros
• int _mm_cvtsi128_si32 (__m128i a): Copy the lower 32-bit integer in a to
dst.

1 int sum (int *a, int n) {
2 __m128i result = _mm_loadu_si128 ((__m128i const *) a), tmp;
3

4 for (int i = ___________________________) {
5

6 _____________________________________
7

8 _____________________________________
9 }

10

Email: Final, Page 10 of 17 Computer Architecture I 2019

11 __
12

13 __
14

15 __
16

17 __
18

19 __
20 }

Solution:

1 int sum (int *a, int n) {
2 __m128i result = _mm_loadu_si128((__m128i const *) a),tmp;
3 for (int i = 4; i < n; i += 4) {
4 tmp = _mm_loadu_si128 ((__m128i const *) (a + i));
5 result = _mm_add_epi32 (result, tmp);
6 }
7 tmp = _mm_srli_si128 (result, 8);
8 result = _mm_add_epi32 (result, tmp);
9 tmp = _mm_srli_si128 (result, 4);

10 result = _mm_add_epi32 (result, tmp);
11 return _mm_cvtsi128_si32 (result);
12 }

(b)1 Which type of Flynn Taxonomy does SSE fit in ? Give its full name.

Solution: Single Instruction Multiple Data

(c)2 Can the previous program achieve 4.5× speed up compared with the linear method (i.e.
use a single thread to add one by one)? Provide the name of the corresponding law. What
is the maximum speed up it can achieve in theory?

Solution: No. Amdahl’s law. 4× at most.

Email: Final, Page 11 of 17 Computer Architecture I 2019

9. Virtual Memory/ TLB
(a)4 Consider an access pattern to those page tables: 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4. How

many misses in the TLB will happen if the TLB can hold 3 entries? Which pages are in
the TLB in the end? What if theTLB can hold 4 entries? The replacement policy is Least
Recently Used (LRU) and the TLB is empty at start.

3 entries: Misses: Entries at end:

4 entries: Misses: Entries at end:

Solution:
10. 1, 0, 4.
8. 4, 2, 0, 1.

(b)2 Consider the same access pattern in (a) and the TLB size is 3. If we change the replace-
ment policy to FIFO, how many misses will happen? What if the TLB size is 4?

3 entries: Misses: Entries at end:

4 entries: Misses: Entries at end:

Solution:
9. 4, 1, 0.
10. 0, 4, 2, 1.

(c)1 Does the increment in page table’s size always lead to reduction in page faults? This is
also called Bélády’s anomaly.

Solution: No.

10. RISC-V meets $!
Notice: We assume a 32-bit machine by default. No matter which replacement policy, if the
block is not full, use FIFO to fill it.

(a)4 Read the given code, answer following questions. (You should show the process of your
calculation. Only giving a solution will receive no points.)

1 uint64_t array[LENGTH] = {0};
2 for (int i = 0; i < REPEAT; i++) {
3 for (int j = 0; j < LENGTH; j += STEP_SIZE) {
4 array[j] = array[j] + j;
5 printf("%ld\n", array[j]);

Email: Final, Page 12 of 17 Computer Architecture I 2019

6 }
7 }

If REPEAT = 4, LENGTH = 32, STEP SIZE = 1 and the four-way set-associative
cache has 4 sets, the length of tag field is 26-bit. The replacement policy is FIFO, write
policy is write back. Calculate the miss rate, then answer the dominat type of miss (3Cs).

Solution: 4 sets means the index field length is log2 4 = 2, therefore, the offset field
length is 32−2−26 = 4. The block size is 24 = 16 Bytes, contains 2 long int. In first
outer iteration, because of compulsory misses, the 32×3 accesses result in 32/2 = 16
misses. In the following 3 outer iterations, all accesses hit in cache. Therefore, the
total miss rate is 16/(32× 3× 4) = 1

24
≈ 4.1667%.

Dominate miss type is “Compulsory”.

Read the given RISC-V code. (a0 is the begin address of an integer array with length
1024.)

1 li t0, 0
2 li t1, 1024
3 li t2, 2 # 1
4 exit: blt t0, t1, loop # 2
5 li a0, 10
6 ecall
7 loop: rem t3, t0, t2
8 beq t3, zero, if
9 else: addi t3, t0, -1

10 slli t3, t3, 2
11 0x00AE0E33 # 3
12 lw t4, 0(t3)
13 0x004E2F03 # 4
14 add t4, t4, t5
15 sw t4, 4(t3)
16 j continue
17 if: slli t3, t0, 2
18 add t3, t3, a0
19 lw t4, 0(t3)
20 addi t4, t4, 1
21 sw t4, 0(t3)
22 continue: addi t0, t0, 1
23 j exit

In the following questions, if the instruction is a pseudo instruction, you should convert it
to its corresponding basic instruction. Every blank can only be filled with ONE instruc-
tion or hex number.

(b)8 Look at the following Instruction cache:

Email: Final, Page 13 of 17 Computer Architecture I 2019

index tag block
0b000 0x0 li t0, 0 li t1, 1024 li t2, 2 blt t0, t1, loop
0b001
0b010
0b011
0b100
0b101
0b110
0b111

Because instructions are also stored in memory and PC is address, instruction cache cal-
culation can be treated as normal cache. Answer the following questions (appendix: ecall
is a 32-bit instruction):

1. Calculate the length of tag and offset field. (You should show the process of your
calculation. Only giving a solution will receive no point)

2. If we run the previous RISC-V code, which sets will be filled? Please list them in
their filling order.

3. In every row in the above table fill in the one instruction that is causing the miss. You
must fill in the correct place, otherwise you will receive no point even the instruction
is correct.

Solution:

1. |offset| = log2 16 = 4, |tag| = 32− 4− 3 = 25.

2. 0b001→ 0b100→ 0b101→ 0b010→ 0b011 (every block contains 4 instruc-
tions, it is easy to get this order) (This question is 1 point)

3. As following, both with and without labels are correct. The hex instruction can
be the instruction after your converting (converted incorrectly does not matter).

Email: Final, Page 14 of 17 Computer Architecture I 2019

index tag block
0b000 0x0 li t0, 0 li t1, 1024 li t2, 2 blt t0, t1, loop
0b001 rem t3, t0, t2
0b010 addi t3, t0, -1
0b011 0x004E2F03
0b100 slli t3, t0, 2
0b101 sw t4, 0(t3)
0b110
0b111

(c)6 Answer the following cache questions (You should show the process of your calculation.
Only giving a solution will receive no point):

1. We have a 4-way associative 1-level data cache with LRU replacement policy. It has
64 16-Bytes blocks. Run the previous RISC-V code, calculate the cache hit rate.

2. Now assume a direct-mapped 3-level data cache. L1 cache has the same configura-
tion as the previous sub-question. L1 hit time is 2 cycles. L2 cache has 90% local hit
rate and 20 cycles hit time. L3 cache has 99% local hit rate and 400 cycles hit time.
Direct access to thememory will take 1000 cycles. Run the previous RISC-V code
(use the previous hit rate), calculate the AMAT.

Solution:

1. The RISC-V code’s corresponding C code is:

1 int array[1024] = {0};
2 for (int i = 0; i < 1024; i++) {
3 if (i % 2 == 2)
4 array[i] = array[i] + 1;
5 else
6 array[i] = array[i - 1] + array[i];
7 }

Therefore, every adjacent two integers will cause 5 memory access which one
miss and four hit. After that, the next two integers’ 5 memory access will all

Email: Final, Page 15 of 17 Computer Architecture I 2019

hit. That means, 10 memory access will cause 1 miss and 9 hit. The cache size
can easily calculate that only compulsory and capacity conflicts. So, total hit
rate is 90%.

2. AMAT= 2 + 0.1× (20 + 0.1× (400 + 0.01× 1000)) = 8.1 cycles.

(d)2 Convert between instructions and hex numbers:

1. li t2, 2:

2. 0x004E2F03:

Solution:

1. 0x00200393 (addi x7 x0 2) or 0x00238013 (addi x0 x7 2)

2. lw t5, 4(t3) (lw x30 4(x28) also OK)

11. OpenMP and Optimization

(a)10 Read this piece of code and answer the following questions.

1 #include <omp.h>
2

3 void matrixMul (int n, double *A, double *B, double *C) {
4 int i, j, k;
5 #pragma omp parallel for private(k)
6 for (int i = 0; i < n; i++)
7 for (int j = 0; j < n; j++)
8 for (int k = 0; k < n; k++)
9 C[i+j*n] += A[i+k*n] * B[k+j*n];

10 }

1. OpenMP is a parallel computing model based on shared memory. Identify the data
sharing attributes of the following variables with ’shared‘ or ’private‘.

1) i

2) j

3) k

2. Reorder the nested loops as well as the OpenMP directive to achieve performance at
least no poorer than any of the serial versions. Note that you can only use exactly
one line of OpenMP directive.

Email: Final, Page 16 of 17 Computer Architecture I 2019

1 void newMatrixMul (int n, double *A, double *B, double *C) {
2 int i, j, k;
3

4 __________________________
5

6 __________________________
7

8 __________________________
9

10 __________________________
11 C[i+j*n] += A[i+k*n] * B[k+j*n];
12 }

Solution:

1. 1) private

2) shared

3) private

2.

1 #include <omp.h>
2

3 void matrixMul (int n, double *A, double *B, double *C) {
4 int i, j, k;
5 #pragma omp parallel for private (i)
6 for (int j = 0; j < n; j++)
7 for (int k = 0; k < n; k++)
8 for (int i = 0; i < n; i++)
9 C[i+j*n] += A[i+k*n] * B[k+j*n];

10 }

(b)2 Time matters!! Use OpenMP directives to parallelize the dot production as fast as you
can! P.S. you don’t have to fill in both blanks.

1 #include <omp.h>
2

3 double dotp(double* x, double* y) {
4 double sum = 0.0;
5

6 __________________________
7 for(int i=0; i<ARRAY_SIZE; i++)
8

9 __________________________
10 sum += x[i] * y[i];

Email: Final, Page 17 of 17 Computer Architecture I 2019

11 return sum;
12 }

Solution: At line 5, #pragma omp parallel for reduction(+:sum)

12.2 Meltdown

Which of those concepts are essential to understanding how Meltdown works?
Circle the correct answer (T if the concept is essential, F otherwise).

• T / F : Virtual Memory

• T / F : Pipelining

• T / F : Abstraction

• T / F : Speculative Execution

• T / F : Caches

• T / F : Dependability via Redundancy

• T / F : Timing

• T / F : TLB

• T / F : Amdahl’s Law

• T / F : Kernel Space

Solution: T (T&F) F T T F T F F T

