
Computer Architecture I Mid-Term I April 03 2019

Computer Architecture I Mid-Term I

Chinese Name:

Pinyin Name:

Student ID:

E-Mail ... @shanghaitech.edu.cn:

Question Points Score

1 1

2 18

3 9

4 5

5 5

6 4

7 10

8 9

9 12

10 20

11 7

Total: 100

• This test contains 16 numbered pages, in-
cluding the cover page, printed on both
sides of the sheet.

• We will use gradescope for grading, so
only answers filled in at the obvious
places will be used.

• Use the provided blank paper for calcula-
tions and then copy your answer here.

• Please turn off all cell phones, smart-
watches, and other mobile devices. Re-
move all hats and headphones. Put every-
thing in your backpack. Place your back-
packs, laptops and jackets out of reach.

• The total estimated time is 105 minutes.

• You have 105 minutes to complete this exam. The exam is closed book; no computers,
phones, or calculators are allowed. You may use one A4 page (front and back) of handwritten
notes in addition to the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you
can. We will deduct points if your solution is far more complicated than necessary. When
we provide a blank, please fit your answer within the space provided.

• Do NOT start reading the questions/ open the exam until we tell you so!

• Unless otherwise stated, always assume a 32 bit machine for this exam.

1.1 First Task (worth one point): Fill in you name
Fill in your name and email on the front page and your ShanghaiTech email on top of every
page (without @shanghaitech.edu.cn) (so write your email in total 16 times).

Email: Midterm I, Page 2 of 16 Computer Architecture I 2019

2. Various Questions
(a)3 Name the 6 Great Ideas in Computer Architecture as taught in the lectures.

Solution:
1. Abstraction (Layers of Representation/Interpretation)
2. Moores Law (Designing through trends)
3. Principle of Locality (Memory Hierarchy)
4. Parallelism
5. Performance Measurement and Improvement
6. Dependability via Redundancy

(b)2 Provide the complete names of the following abbreviations:

ISA:

RISC:

Solution:
ISA: Instruction Set Architecture
RISC: Reduced Instruction Set Computing / Computers

(c)2 There is an opposite philosophy of architectural design other than RISC. One of the in-
struction sets that follows such philosophy is the famous Intel x86. Pick its correct name:

a. AISC b. CISA c. CISC d. RISA

Give its full name:

Solution: c
Complex Instruction Set Computing / Computers

(d)2 Let’s play with gcc! It does the correct thing only if you provide the correct options.
Write the option you need for the following common scenarios:

1. Enable debugging mode, add debug information: -

2. Turn off all the optimizations: -

3. Be strict! All minor warnings should be treated as errors: -

4. Set the C language standard to ANSI C (C89): -

Solution:
1. -g / -ggdb / -glevel with level ≥ 1

Email: Midterm I, Page 3 of 16 Computer Architecture I 2019

2. -O0 (Attention: “Hypen” “Oh” “Zero”)
3. -Werror 4. -std=c89

(e)4 We can classify computer languages into two categories: Compiling and Interpreting.
(Forget JAVA-like languages which mix up these two). Which scheme does the following
languages take? Write exactly “compiling” or “interpreting”.

C/C++: Python:

Based on your understanding, are the following statements true (T) or false (F)? Circle
your answer.

T / F It is often harder to decompile (reverse-engineer) a compiling language
software than an interpreting language software.

T / F For the same algorithm, a compiled implementation always runs faster.

T / F We do not need any environment dependency to support interpreting
language execution on a brand-new machine.

Solution: compiling interpreting T F F

(f)5 Given below is a piece of C code. What location will the five expressions on the right give,
when the execution reaches point Break!? Write “stack”, “heap”, “static” or “text” for
each of them. (For example, write “heap” to indicate that the expression evaluates to an
address within the memory section of heap.)

1 #include <stdio.h>
2 #include <stdlib.h>
3 static const int year = 2019;
4

5 int main (void) {
6 char name[] = "Jose";
7 char *game = "The Elder Scrolls";
8 int *ver = malloc(sizeof(int));
9 *ver = 5;

10 /* Break! */
11 printf("Until %d, %s’s favourite game is

%s %d.\n", year, name, game, *ver);
12 return 0;
13 }

Expressions:

&year

name

game

ver

&ver

Solution:
&year: static
name: stack

Email: Midterm I, Page 4 of 16 Computer Architecture I 2019

game: static
ver: heap
&ver: stack

3. Number Representation

(a)4 Fill in the blanks with a letter (a, b, c, d) to match each expression in the left column, with
an equivalent expression from the right column, ˆ is XOR:

1. (x >> 16) << 16 = a. 0

2. x ˆ x ˆ x = b. ˜x

3. x ˆ 1 = c. x

4. x & ˜x = d. x & 0xFFFF0000

Solution: 1. d 2. c 3. b 4. a

(b)3 Show how the binary string 0b1001 0101 can be interpreted and displayed as the follow-
ing types:

1. Hexadecimal: 0x

2. Unsigned Decimal:

3. Two’s Complement Decimal:

Solution: 1. 0x95 2. 149 3. -107

(c)2 Consider we have a base 32 number, with each number position represented by the nu-
merals 0 through 9 plus the letters A (10), B (11), C(12), D(13), E (14), F (15), G (16), H
(17), I (18), J (19), K (20), L (21), M (22), N (23), O (24), P (25), Q (26), R (27), S (28),
T (29), U (30), and V(31).

Convert VAN32 to:

1. Binary:

2. Hexadecimal: 0x

Solution: 1. 111 1101 0101 0111 2. 0x7d57

Email: Midterm I, Page 5 of 16 Computer Architecture I 2019

4. C types and variables

Note: All following code is complied with ”-m32 -std=c89” and executed on a little-endian
machine.

(a)2 What is the output of the following program:

1 #include <stdio.h>
2 #include <stdint.h>
3 int main () {
4 int8_t a;
5 uint8_t b;
6 a = 255;
7 b = 255;
8 a += 255;
9 b += 255;

10 printf ("%d %u\n", a, b);
11 return 0;
12 }

Solution: -2 254

(b)3 Suppose we have a union:

1 union Foo {
2 uint8_t a;
3 int16_t b;
4 uint32_t c;
5 char d[4];
6 }bar;

If we copied string "ABC" into bar.d by strcpy(bar.d, "ABC"), what is the value
of the following variables? Write the value in hexadecimal format (use two’s complement
format for signed integers).

1. bar.a: 0x

2. bar.b: 0x

3. bar.c: 0x

Solution: 1. 0x41 2. 0x4241 3. 0x434241

5. See what you can C
(a)5 This section involves T / F questions. Incorrect answers on T / F questions are penalized

with negative credit. Circle the correct answer.

Email: Midterm I, Page 6 of 16 Computer Architecture I 2019

T / F: bool cannot be directly used under C89 standard.
T / F: Increment operator (++) should be used with cautious, since it may reduce the
readability of the code sometimes.
T / F: A constant variable is different from a macro.
T / F: Empty pointers (NULL) cannot be directly dereferenced.
T / F: Conditional branches (if ... else ...) cannot interchange with conditional
compilation (#if ... #else ... #endif) for most of the time.
T / F: All header files from C standard library can be included multiple times.
T / F: The address of a function is sometimes larger than that of a variable.
T / F: Different members of a union can have different sizes.
T / F: const int * means this pointer can be changed, but the value it points to can-
not be changed.
T / F: int * const means this pointer cannot be changed, but the value it points to
can be changed.

Solution: TTTTT TFTTT

6. Playing fire with C pointers
(a)2 There are 4 kinds of pointers in C: wild pointer, void pointer, null pointer and dangling

pointer. Which kind(s) of pointer(s), when used, will definitely cause memory issues?

Solution: Wild and dangling pointers. (One point for each, if you write null pointer,
you won’t receive or lose any point.)

(b)2 For the following code, specify which kind (wild, null or dangling) do these void pointers
belong to. If the void pointer does not belong to any of the three kinds, write down “void”.

1 void * foobar () {
2 int x = 5;
3 return &x;
4 }
5 int main () {
6 void *a;
7 void *b = NULL;
8 void *c = foobar;
9 void *d = foobar ();

10 return 0;
11 }

1. a: pointer 2. b: pointer

3. c: pointer 4. d: pointer

Email: Midterm I, Page 7 of 16 Computer Architecture I 2019

Solution: a: wild b: null c: void d: dangling

7. King of C Macro
(a)1 Suppose we want to declare an array whose length can be easily modified afterwards,

1 const int MAX_LEN = 10;
2 int a[MAX_LEN];

However, this is not allowed under C89 standard. How to fix it using C macro?

Solution: #define MAX_LEN 10

(b)3 Suppose we have an macro:

1 #define MUL(a, b) a * b

What is the result of MUL(1 + 2, 3 + 4)? Did we get the result we want? If not, how
to fix this macro?

Solution: 11. No.
1 #define MUL(a, b) (a) * (b)

(c)1 Based on (b), write a macro MAX(a, b) that returns the maximum value of the two. You
should use ternary operator: cond ? x : y returns x when cond is true, y otherwise.

Solution: (One possible version, other versions are accepted if correct)
1 #define MAX(a, b) (a) > (b) ? (a) : (b)

(d)3 Based on the macro you wrote in (c), if a = 10, b = 15, what is the value of a after
the execution of MAX(a++, b)? What if a = 15, b = 10? Why?

Solution: 11 and 17, respectively.
Because a++ only executed once if a <= b (depends on your answer in (c)), twice
otherwise.

(e)2 Suppose we have an array for struct command, we can initialize the array in the
following way (quit_command and help_command are just variables):

1 struct command commands[] = {
2 { "quit", quit_command },
3 { "help", help_command },
4 ...
5 };

Now we want to use a single macro COMMAND(NAME) to help us initialize the array, which
should look like:

Email: Midterm I, Page 8 of 16 Computer Architecture I 2019

1 struct command commands[] = {
2 COMMAND(quit),
3 COMMAND(help),
4 ...
5 };

Finish the implementation of the macro. You can use “#”, but ternary operator and
if-else statement are not allowed.

Solution: Note: 1pt for #NAME, 1pt for ##. There is no quotes around NAME.
1 #define COMMAND(NAME) { #NAME, NAME ## _command }

8. DIY session

Note: In this session, you are required to write you own code into the blanks. All code
should adhere to the C89 standard, and there can be only one instruction per line (e.g. each
line cannot have more than one semicolon, comma operator is not allowed, etc.) Your code
should not produce any warning as well.

(a)3 Implement a function that swaps two integers’ value.

1 /* Swap two integers. */
2 void mySwapInt (_____ a, _____ b) {
3

4 ________________________________
5

6 ________________________________
7

8 ________________________________
9 }

Solution: Reference program:
1 void mySwapInt (int *a, int *b) {
2 int t = *a;
3 *a = *b;
4 *b = t;
5 }

(b)3 Implement a function resembles string.h’s memcpy. No function from the C standard
library is allowed.

1 /* Copies the values of size bytes from the location pointed to
2 by src directly to the memory block pointed to by dst. */
3 void myMemcpy (void *dst_, const void *src_, size_t size) {
4 unsigned char *dst = dst_;
5

6 ____________________ *src = src_;

Email: Midterm I, Page 9 of 16 Computer Architecture I 2019

7

8 ________________________________
9

10 ________________________________
11

12 ________________________________
13

14 ________________________________
15 }

Solution: Reference program:
1 void myMemcpy (void *dst_, const void *src_, size_t size) {
2 unsigned char *dst = dst_;
3 const unsigned char *src = src_;
4 while (size-- > 0)
5 *dst++ = *src++;
6 }

(c)3 Implement a generic swap function that can swap variables of any type, as long as the
size is given. You can only use malloc, free and myMemcpy from (b). No memory
leaks are allowed.

1 /* Swap two variables with any type. */
2 void mySwap (_____ a, _____ b, size_t size) {
3

4 ________________________________
5

6 ________________________________
7

8 ________________________________
9

10 ________________________________
11

12 ________________________________
13 }

Solution: Reference program:
1 void mySwap (void *a, void *b, size_t size) {
2 void *t = malloc (size);
3 myMemcpy (t, a, size);
4 myMemcpy (a, b, size);
5 myMemcpy (b, t, size);
6 free (t);
7 }

9. RISC-V Programming

Email: Midterm I, Page 10 of 16 Computer Architecture I 2019

(a)2 Getting familiar with a programming usually starts with printing “Hello world!” in the
console. We will jump into RISC-V part by doing so. Please fill in the blanks of the
following piece of code.

1 .data
2

3 ________________________________
4 .text
5

6 ________________________________
7

8 ________________________________
9

10 ________________________________

Solution:

1 .data
2 str: .string "Hello world!"
3 .text
4 li a0, 4
5 la a1, str
6 ecall

(b)5 In the C programming language, you may count the length of a string via strlen given
in the lectures. Please fill in the following blanks to implement this function in RISC-V.
Note that you are not allowed to write lines of code more than the number of blank lines
given, otherwise some but not all of the points will be deducted.

1 addi s1, x0, 1
2 jal strlen
3 add a0, x0, s1
4 ecall
5 strlen:
6

7 ________________________________
8

9 ________________________________
10

11 ________________________________
12 la s1, str
13 loop:
14

15 ________________________________
16

17 ________________________________

Email: Midterm I, Page 11 of 16 Computer Architecture I 2019

18

19 ________________________________
20

21 ________________________________
22

23 ________________________________
24

25 ________________________________
26 epilogue:
27

28 ________________________________
29

30 ________________________________
31 jr ra

Solution:

1 addi s1, x0, 1
2 jal strlen
3 add a0, x0, s1
4 ecall
5

6 strlen:
7 addi sp, sp, -4
8 sw s1, 0(sp)
9 mv a1, x0

10 la s1, str
11 loop:
12 lbu t0, 0(s1)
13 beq t0, x0, epilogue
14 addi a1, a1, 1
15 addi s1, s1, 1
16 j loop
17 epilogue:
18 lw s1, 0(sp)
19 addi sp, sp, 4
20 jr ra

Email: Midterm I, Page 12 of 16 Computer Architecture I 2019

(c)5 For ease of use, RISC-V provides a variety of pseudo instructions, most of them should
be translated to TAL instructions during assembly.

1. Identify whether the following instructions are pseudo instructions. If it is, write the
expansion form of this instruction.

T / F jal ra, L1 #1

T / F ble t1, t2, L2 #2

T / F j L3 #3

T / F jr t3 #4

T / F li t0, 0x12345678 #5

Solution: F T T T T
bge t2, t1, L2 #2
jal x0, L3 #3
jalr x0, t3, 0 #4
lui t0, 74565 #5
addi t0, t0, 1656

10. RISC-V Questions
Notice. In this part, you can write at most ONE line of code in each space when we ask you
to write down codes, but you do not have to use all of the spaces. If you write more than
one line of code in one space, that answer will be voided. (”one line of code” means one
semicolon in C or one instruction in RISC-V)

(a)4 This section involves T / F questions. Incorrect answers on T / F questions are penalized
with negative credit, the section’s credit will not be less than 0 point (e.g. one incorrect
and three correct, you will get 2 points). Circle the correct answer.

T / F: The following instruction will be modified in linker.

1 lui $t0, $t0, 0x8000

T / F: The instruction 0x00a98863 is a “SB-Format” instruction.
T / F: The instruction “jump register” will not change program counter.
T / F: AUIPC used for absolute addressing.

Email: Midterm I, Page 13 of 16 Computer Architecture I 2019

Solution: F T F F

Look at the following RISC-V code.

1 mystery:
2 add a0, ra, zero a0: R[31:0]
3 la t0, mystery
4 addi t2, zero, -1 t2:
5 _____________________
6 slli t2, t2, 28 t2:
7 _____________________
8 xori t2, t2, -1 t2:
9 _____________________

10 and ra, t2, a0 ra:
11 _____________________
12 srai ra, ra, 6 ra:
13 _____________________
14 lui t2, 0x800 t2:
15 _____________________
16 or ra, t2, ra ra:
17 _____________________
18 sw ra, 4(t0)
19 jr a0

(b)4 Please use the formats like following examples to write the annotated registers values in
binary.
e.g.1 a0: R[31:0] e.g.2 zero: 0 × 32

1. R[15:0] - gives the less significant half of R.
2. 0 × 13 - gives 13 consecutive 0s.
3. 1 × 12 - gives 12 consecutive 1s.
4. 0 × 28 | 1 | 0 × 3 - gives 0b1000 (8).

Solution:

1× 32

1× 4|0× 28

0× 4|1× 28

0× 4|R[27 : 0]

0× 10|R[27 : 6]

0× 8|1|0× 23

0× 8|1|0|R[27 : 6]

Email: Midterm I, Page 14 of 16 Computer Architecture I 2019

(c)1 There is an instruction “beq t1, t2, mystery”. When will the goal address be determined?

Solution: Assembly.

(d)1 Towards end of the above code “jr a0”. When will the goal address be determined?

Solution: Run time.

Look at the following RISC-V code.

1 num_of_ones:
2 addi sp, sp, -12 # t1
3 sw s1, 0(sp)
4 sw s2, 4(sp)
5 sw s3, 8(sp) # t2
6 0x00a004b3 # t3
7 ____________________# 1
8 ____________________# 2
9 loop:

10 ____________________# 3
11 addi s3, s3, -1
12 ____________________# 4
13 ____________________# 5
14 0xfe0288e3 # t4
15 addi s2, s2, 1
16 ____________________# 6
17 exit:
18 ____________________# 7
19 lw s1, 0(sp)
20 lw s2, 4(sp)
21 lw s3, 8(sp)
22 addi sp, sp, 12
23 jr ra

(e)4 Translate instructions #t1, #t2 to machine code written in hexadecimal! Translate #t3, #t4
to RISC-V instructions!

addi sp, sp, -12 # t1:

sw s3, 8(sp) # t2:

0x00a004b3 # t3:

0xfe0288e3 # t4:

Email: Midterm I, Page 15 of 16 Computer Architecture I 2019

Solution:

1 0xff410113 # t1
2 0x01312423 # t2
3 add s1, zero, a0 # t3
4 beq t0, zero, loop # t4

(f)4 Finish the function “num of ones()”, which returns the number of 1s in the given binary
parameter. Every line can only have at most one instruction, but you do not have to use
all of the lines.

Solution:

1 mv s2, zero # 1 {add s2, zero, zero / li s2, 0}
2 li s3, 32 # 2 {addi s3, zero, 32}
3 beq s3, zero, exit # 3
4 andi t0, s1, 1 # 4
5 srli s1, s1, 1 # 5
6 j loop # 6 {jal zero, loop / jalr zero, loop}
7 mv a0, s2 # 7 {add a0, zero, s2}

(g)2 The assembly code above can be used as a function. How would you call the function
and which registers would you need to fill with proper values before calling the function?

Solution: “jal num of ones”, a0 set to the the target number.

11. CALL Questions
(a)7 For each step, list the task that step is responsible for. Some task might belong to multiple

steps.

1. translate a source file written in a higher level language to assembly code
2. turn branch labels into addresses
3. copy the .text and .data segments from disk into memory
4. for each unresolved reference to a symbol, find the definition of the symbol
5. jump to the main() function to start the program
6. translate pseudo instructions to real instructions
7. optimize the code

Email: Midterm I, Page 16 of 16 Computer Architecture I 2019

Compile:

Assemble:

Link:

Load:

Solution:
Compile: a g
Assemble: b f
Link: d
Load: c d e

