Discussion 6: SDS

QIYUAN DAI

Synchronous Digital Systems

- Synchronous:
- All operations coordinated by a central clock

『-

- Digital:
- Represent all values by 1 and 0

- High voltage $\left(\mathrm{V}_{\mathrm{dd}}\right)=$ True $=$ On switch $=1$
-Low voltage (OV) = False $=$ Off switch $=0$

- Synchronous Digital Systems consist of two basic types of circuits:
- Combinational Logic (CL) circuits
- Sequential Logic (SL)

CMOS Transistor Networks

Negative

n-channel transitor

Off when voltage at Gate is low
On when voltage(Gate) > voltage (Threshold)
Can pass 0 V when Gate is 1 V

Positive

On when voltage at Gate is low
Off when voltage(Gate) > voltage (Threshold)
Can pass 1 V when Gate is 0 V

CMOS Networks

Combinational Logic

AND

A $\cdot \mathrm{B}$

OR
$A+B$

NOT
$\overline{\mathrm{A}}$

Truth Table

- Same as Discrete Mathematics
- Single bit input

A	B	C
1	1	0
1	0	1
0	1	1
0	0	0

- Multiple bit input

A	B	C
$a_{1} a_{0}$	$b_{1} b_{0}$	$c_{2} c_{1} c_{0}$

From Truth Table to logical expression

- Sum of Products form (AKA Principal Disjunctive Normal Form in Discrete Mathematics)

$$
\text { - } C=A \cdot \bar{B}+\bar{A} \cdot B
$$

-This will help you simplify an unknown logic.

- Also you can use Product of Sums(AKA PCNF)

$$
C=(A+B) \cdot(\bar{A}+\bar{B})
$$

- Do not forget to use Laws of Boolean Algebra.

Complementarity Laws of 0's and 1's Identities Idempotent Laws Commutativity Associativity Distribution Uniting Theorem Uniting Theorem v. 2 DeMorgan's Law

Representations of Combinational Logic

Gate Diagram

Boolean Expression
$C=A \cdot \bar{B}+\bar{A} \cdot B$

A	B	C
1	1	0
1	0	1
0	1	1
0	0	0

Example

Example

$$
\begin{aligned}
C & =(A+B) \cdot(\bar{A}+B) \cdot B \\
& =(A \cdot \bar{A}+B \cdot \bar{A}+A \cdot B+B \cdot B) \cdot B \\
& =(B \cdot(\bar{A}+A)+B) \cdot B \\
& =(B+B) \cdot B \\
& =B \cdot B \\
& =B
\end{aligned}
$$

7. SDS

(a) Draw the Timing Diagram for the circuit below. The delay for the gates are 10 ns , the clock-to-q delay for a register is 20 ns , each clock cycle is 80 ns , each grid in the following diagram is a unit of 10 ns . The output is initially given in the graph.

Use any of those graphs to put in your answer (so you can re-do it). Clearly mark your final answer if you use more than one graph!

8. Circuit time calculation

In this circuit below, RegA and RegB have setup, hold and clk-to-q times of 8ns, NOT logic gate has a delay of 1 ns , AND logic gate has a delay of 3ns, XNOR logic gate has a delay of 5 ns , and RegC has a setup time of 9 ns .

