Computer Architecture I
 Homework 6
 2021 Spring April 22

Instructions:

Homework 6 covers the content of caches, please refer to the lecture slides. You can print it out, write on it and scan it into a pdf, or you can edit the PDF directly, just remember: you must create a PDF and upload to the Gradescope. Please assign the questions properly on Gradescope, otherwise you will lose 25% of points.

[30 points] Question Set 1. Direct Mapped Cache

In a 32 -bit machine (word size is 32 bit), the clock frequency is 2 GHz . We have a direct mapped cache with properties as follows:

1. Cache size is 32 Bytes;
2. Block size is 8 Bytes;
3. Cache hit time is 2 cycles;
4. Cache miss penalty is 100 cycles;

1-A. What is the width (in bits) of each field of following address bit assignment?

TAG: 27	Set index: 2	Block offset: 3

Please provide info about how you came to this result. (Answer 6pt + Analysis 4pt)

1-B. We will access the data of addresses as follows. Fill in the blanks. It is about T/I/O(tag/index/offset), whether there is a hit. (each line worth 1 pt.)

Addresses (serially access)	T/I/O	Miss or Hit \{"Miss", "Hit"\}
0×00000004	$0 / 0 / 4$	Miss
0×00000005	$0 / 0 / 5$	Hit
0×00000068	$3 / 1 / 0$	Miss
$0 \times 000000 c 8$	$6 / 1 / 0$	Miss
0×00000068	$3 / 1 / 0$	Miss
0×000000 dd	$6 / 3 / 5$	Miss
0×00000045	$2 / 0 / 5$	Miss
0×00000004	$0 / 0 / 4$	Miss
$0 \times 000000 c 8$	$6 / 1 / 0$	Miss
0×00000004	$0 / 0 / 4$	Hit

1-C. Calculations. (Show progress, worth 50% pts)
$1-\mathrm{C}-\mathrm{i}$: miss rate: (4 pt.)
0.8

1-C-ii: AMAT (ns): (3 pt.)
$1+0.8 * 50=41 \mathrm{~ns}$

1-C-iii: AMAT if we don't have this cache (ns): (3 pt.)

50ns

[30 points] Question Set 2. Four-Way Set Associative Cache

From Q1 (32bit machine, clock frequency is 2 GHz), we implemented a four-way set associative cache. The parameters are shown as follows:

1. Cache size is 32 B ;
2. Block size is 8 Bytes;
3. Cache hit time is 2 cycles;
4. Cache miss penalty is 100 cycles;

2-A. What the width of each field of following address bit assignment:
TAG: 29
Set index: 0
Block offset: 3
Give me the progress how you think about it. (Answer 6pt + Analysis 4pt)

2-B. We will access the data of addresses as follows. Fill in the blanks. It is about T/I/O(tag/index/offset), whether there is a hit. Use LRU algorithm. (each line worth 1 pt.)

Addresses (serially access)	T/I/O	Miss or Hit \{"Miss", "Hit"\}
0×00000004	$0 / 0 / 4$	Miss
0×00000005	$0 / 0 / 5$	Hit
0×00000068	$13 / 0 / 0$	Miss
$0 \times 000000 c 8$	$25 / 0 / 0$	Miss
0×00000068	$13 / 0 / 0$	Hit
$0 \times 000000 \mathrm{dd}$	$27 / 0 / 5$	Miss
0×00000045	$8 / 0 / 5$	Miss
0×00000004	$0 / 0 / 4$	Miss
$0 \times 000000 c 8$	$25 / 0 / 0$	Miss
0×00000004	$0 / 0 / 4$	Hit

2-C. Calculations.
2-C-i. Miss rate: (5 pt.)
0.7

2-C-ii. Calculate the AMAT in ns. (5 pt.)
$1+0.7 * 50=36$

[22 points] Question Set 3. Cache Friendly Programming

This C program is run on a processor with a direct-mapped data cache with a size of 1 KiB and a block size of 16 bytes. Assume that your cache begins cold and no optimization. (32bit machine)

$$
\begin{aligned}
& \text { int } i, j, A[256 * 256] ; \\
& \text { sum }=0 ; \\
& \text { for }(i=0 ; i<256 ; i++)\{ \\
& \text { for }(j=0 ; j<256 ; j++)\{ \\
& \text { sum }+=A[256 * i+j] ; \\
& \text { \} } \\
& \}
\end{aligned}
$$

Assume no optimization and sizeof(int) $==4$ and $A=0 \times 4000$.
$3-A-i$. Make use of what kind of locality (2 pt.)
Spacial locality.

3-A-ii. Calculate the miss rate. Show progress (10 pt.)

Every four miss one. Miss rate $=0.25$
$3-B$. Calculate the miss rate.

$$
\begin{aligned}
& \text { int } i, j, A[256 * 256] \\
& \text { sum }=0 ; \\
& \text { for }(i=0 ; i<256 ; i++)\{ \\
& \text { for }(j=0 ; j<256 ; j++)\{ \\
& \text { sum }+=A[256 * j+i] \\
& \text { \} } \\
& \}
\end{aligned}
$$

Show your progress (10 pt.)

All miss. Miss rate $=1$

[18 points] Question Set 4. AMAT

4-A. Impact of increasing associativity with fixed block size and number of sets. Fill in with increase, decrease or unchange. (3 pt)

Hit time	increase
Miss rate	decrease
Miss penalty	unchange

4-B. Suppose your L1\$ has a hit time of 2 cycles and a local miss rate of 20%. Your L2\$ has a hit time of 15 cycles and a global miss rate of 5%. Your main memory access needs 100 cycles.

4-B-i. Write down your local miss rate of L2\$. (5 pt)
$5 / 20=25 \%$

4-B-ii. Write down the AMAT of the system. (5 pt)
$2+0.2 *(15+0.25 * 100)=10$ cycles

4-B-iii. Suppose your newly added L3\$ has a hit time of 30 cycles and you want reduce your AMAT of the system to 8 cycle, what is the largest local miss rate? (5 pt)
$2+0.2 *(15+0.25 *(30+m * 100))<=8$
M <= 30%

