
CS 110
Computer Architecture

Lecture 4: Intro to Assembly Language,
RISC-V Intro

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

History

2

52 years ago:
Apollo Guidance
Computer
programmed in
Assembly
30x30x30cm, 32 kg.
10,000 lines of machine
code manually entered –
tons of easter eggs!
abcnews.go.com/Technology/apollo-11s-source-
code-tons-easter-eggs-
including/story?id=40515222

Margaret Hamilton with the
code she wrote.

• Lead Apollo flight software designer.
• Came up with the idea of naming the

discipline, "software engineering"
• https://en.wikipedia.org/wiki/Margaret_

Hamilton_%28scientist%29

https://en.wikipedia.org/wiki/Margaret_Hamilton_%28scientist%29

Levels of
Representation/Interpretation

lw xt0, 0(x2)
lw xt1, 4(x2)
sw xt1, 0(x2)
sw xt0, 4(x2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

3

Logic Circuit Description
(Circuit Schematic Diagrams)

Assembly Language

• Basic job of a CPU: execute lots of instructions.
• Instructions are the primitive operations that the

CPU may execute.
• Different CPUs implement different sets of

instructions. The set of instructions a particular
CPU implements is an
Instruction Set Architecture (ISA).
– Examples: ARM, Intel x86, MIPS, RISC-V,

IBM/Motorola PowerPC (old Mac), Intel IA64, ...

4

Instruction Set Architectures
• Early trend was to add more and more instructions to

new CPUs to do elaborate operations
– VAX architecture had an instruction to multiply polynomials!

• RISC philosophy (Cocke IBM, Patterson, Hennessy, 1980s)
–
Reduced Instruction Set Computing
– Keep the instruction set small and simple, makes it easier to

build fast hardware.
– Let software do complicated operations by composing simpler

ones.

5

RISC-V Architecture

• New open-source, license-free
RISC ISA spec
– Supported by growing shared software ecosystem
– Appropriate for all levels of computing system, from

microcontrollers to supercomputers
– 32-bit, 64-bit, and 128-bit variants (we’re using 32-bit in

class, textbook uses 64-bit)

• RISC-V standard maintained by non-
profit RISC-V Foundation

6

More than 435 RISC-V Members
across 33 Countries Around the World

RISC-V in China
• 33 Chinese members in the global RISC-V Foundation
• 500 attendees at the China RISC-V Forum in Nov 2019

• RISC-V International Open Source Laboratory (RIOS Laboratory) research
at Tsinghua-Berkeley Shenzhen Institute (TBSI) June 2019

• Alibaba processor achieves 7.1 Coremark/MHz at a frequency of 2.5GHz
on a 12nm process node, which is 40 percent more powerful than any
RISC-V processor produced to date. – EE/Times July 2019

• GigaDevice launched world’s first general-purpose microcontroller based
on RISC-V for the IOT market. – EE Times 26 Aug 2019

• Huami’s upcoming Huangshan 1S Processor in 7nm
Huami one of the top wearable manufacturers; August 27, 2019

9

Institute of Computing Technology of the
Chinese Academy of Sciences

Institute of Software,
Chinese Academy of
Sciences

RISC-V International Open
Source Laboratory
Tsinghua-Berkeley Shenzhen
Institute

10
https://riscv.org/members/

https://riscv.org/members/

Why RISC-V in CS110?

• Why RISC-V instead of Intel 80x86?
– RISC-V is simple, elegant. Don’t want to get bogged down

in gritty details.
• It is a very very clean RISC
– No real additional "optimizations"

11
RISC-V Green Card

• Generally only one way to do any
particular thing
• Only exception is two different

atomic operation options: Load
Reserved/Store Conditional
Atomic swap/add/etc...

Assembly Variables: Registers

• Unlike HLL like C or Java, assembly cannot use
variables
– Why not? Keep Hardware Simple

• Assembly Operands are registers
– Limited number of special locations built directly into

the hardware
– Operations can only be performed on these!

• Benefit: Since registers are directly in hardware,
they are very fast
(faster than 1 ns - light travels 30cm in 1 ns!!!)

12

Processor

Control

Datapath

Registers, inside the Processor

13

PC

Registers
Arithmetic & Logic Unit

(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Write Data

Read Data

Great Idea #3: Principle of Locality /
Memory Hierarchy

14

Number of Registers

• Drawback: Since registers are in hardware, there
is a predetermined number of them
– Solution: Assembly code must be very carefully put

together to efficiently use registers
• 32 registers in RISC-V
– Why 32? Smaller is faster, but too small is bad.

• Each RISC-V register is 32 bits wide (in RV32
variant)
– Groups of 32 bits called a word in RV32
– P&H textbook uses 64-bit variant RV64 (doubleword)

15

RISC-V Registers

• Registers are numbered from 0 to 31
• Number references:
– x0, x1, x2, … x30, x31

• x0 : special: always holds value zero
=> only 31 registers to hold variable values

• Each register can be referred to by number or
name
– Cover names later

16

C, Java variables vs. registers

• In C (and most High Level Languages) variables
declared first and given a type
• Example: int fahr, celsius;

char a, b, c, d, e;

• Each variable can ONLY represent a value of
the type it was declared as
(cannot mix and match int and char variables).

• In Assembly Language, registers have no type;
operation determines how register contents
are treated

17

Assembly Instructions

• In assembly language, each statement (called
an Instruction), executes exactly one of a short
list of simple commands

• Unlike in C (and most other High Level
Languages), each line of assembly code
contains at most 1 instruction

• Instructions are related to operations
(=, +, -, *, /) in C or Java

18

Comments in Assembly

• Another way to make your code more
readable: comments!

• Hash (#) is used for RISC-V comments
– anything from hash mark to end of line is a

comment and will be ignored
– This is just like the C99 //

• Note: Different from C.
– C comments have format

/* comment */
so they can span many lines

19

RISC-V Addition and Subtraction (1/4)

• Syntax of Instructions:
– One two, three, four
where:
– One = operation by name
– two = operand getting result (“destination”)
– three = 1st operand for operation (“source1”)
– four = 2nd operand for operation (“source2”)

• Syntax is rigid:
– 1 operator, 3 operands
– Why? Keep Hardware simple via regularity

add x1, x2, x3

20

Addition and Subtraction of Integers (2/4)

• Addition in Assembly
– Example: addx1,x2,x3 (in RISC-V)
– Equivalent to: a = b + c (in C)
– where C variables ⇔ RISC-V registers are:

a ⇔ x1, b ⇔ x2, c ⇔ x3
• Subtraction in Assembly
– Example: subx3,x4,x5 (in RISC-V)
– Equivalent to: d = e - f (in C)
– where C variables ⇔ RISC-V registers are:

d ⇔ x3, e ⇔ x4, f ⇔ x5
21

Addition and Subtraction of Integers (3/4)

• How to do the following C statement?
a = b + c + d - e;

• Break into multiple instructions
add x10, x1, x2 # a_temp = b + c
add x10, x10, x3 # a_temp = a_temp + d
sub x10, x10, x4 # a = a_temp - e

• Notice: A single line of C may break up into
several lines of RISC-V.

• Notice: Everything after the hash mark on each
line is ignored (comments).

22

Addition and Subtraction of Integers (4/4)

• How do we do this?
f = (g + h) - (i + j);

• Use intermediate temporary register
add x5, x20, x21 # a_temp = g + h
add x6, x22, x23 # b_temp = i + j
sub x19, x5, x6 # f = (g + h)- (i + j)

23

Immediates

• Immediates are numerical constants.
• They appear often in code, so there are special

instructions for them.
• Add Immediate:
– addi x3,x4,10 (in RISC-V)
– f = g + 10 (in C)
– where RISC-V registers x3,x4 are associated with C
variables f, g

• Syntax similar to add instruction, except that last
argument is a number instead of a register.

24

Immediates

• There is no Subtract Immediate in RISC-V: Why?
–There are add and sub, but no addi counterpart

• Limit types of operations that can be done to
absolute minimum
– if an operation can be decomposed into a simpler

operation, don’t include it
– addi …, -X = subi …, X => so no subi

addi x3,x4,-10 (in RISC-V)
f = g - 10 (in C)

– where RISC-V registers x3, x4 are associated with C
variables f, g

25

Register Zero

• One particular immediate, the number zero
(0), appears very often in code.

• So the register zero (x0) is ‘hard-wired’ to
value 0; e.g.
– add x3, x4, x0 (in RISC-V)
– f = g (in C)
– where RISC-V registers x3,x4 are associated with C
variables f, g

• Defined in hardware, so an instruction
– add x0,x3,x4 will not do anything!

26

No-Op
• A No-op is an instruction that does nothing...
– Why?

You may need to replace code later: No-ops can fill space,
align data, and perform other options

• By convention RISC-V has a specific no-op instruction...
– add x0 x0 x0

• Why?
– Writes to x0 are always ignored...

RISC-V uses that a lot as we will see in the jump-and-link
operations

– Making a "standard" no-op improves the disassembler and
can potentially improve the processor

27

Processor

Control

Datapath

Data Transfer:
Load from and Store to memory

28

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write Data=
Store to
memory

Read Data=
Load from
memory

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Fast but limited place
To hold values

Much larger place
To hold values, but

slower than registers!

0
1
2
3
…

Memory Addresses are in Bytes

• Lots of data is smaller than 32 bits, but rarely
smaller than 8 bits – works fine if everything is a
multiple of 8 bits

• 8 bit chunk is called a byte
(1 word = 4 bytes)

• Memory addresses are really
in bytes, not words

• Word addresses are 4 bytes
apart
– Word address is same as

address of lowest byte

Little Endian: Start with the
small end (little end; Least
significant byte of the word)

29

3
7

11
15
…

2
6

10
14
…

1
5
9

13
…

0
4
8

12
…

bit: 31 24 23 16 15 8 7 0

Big-endian and little-endian from Jonathan Swift's Gulliver's Travels
Big Endian vs. Little Endian

Big Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE0 BYTE1 BYTE2 BYTE3

00000001 00000100 00000000 00000000

Examples
Names in China (e.g. Schwertfeger, Sören)

Java Packages: (e.g. org.mypackage.HelloWorld)
Dates done correctly ISO 8601 YYYY-MM-DD

(e.g. 2020-03-22)
Eating Pizza crust first

Unix file structure (e.g., /usr/local/bin/python)
”Network Byte Order”: most network protocols

IBM z/Architecture; very old Macs

Little Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

Examples
Names in the west (e.g. Sören Schwertfeger)
Internet names (e.g. sist.shanghaitech.edu.cn)
Dates written in England DD/MM/YYYY
(e.g. 22/03/2020)
Eating Pizza skinny part first (the normal way)

CANopen
Intel x86; RISC-V

Consider the number 1025 as we normally write it:
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

• The order in which BYTES are stored in memory
• Bits always stored as usual. (E.g., 0xC2=0b 1100 0010)

en.wikipedia.org/wiki/Big_endian

bi-endian: ARM (runs mostly little endian), MIPS, IA-64, PowerPC 30

Example

Addr.
dec

Addr.
hex

8-bit
Value

… … …

15 0x0F 0x77

14 0x0E 0x66

13 0x0D 0x55

12 0x0C 0x44

11 0x0B 0x33

10 0x0A 0x22

9 0x09 0x11

8 0x08 0x00

7 0x07 0xEF

6 0x06 0xCD

5 0x05 0xAB

4 0x04 0x89

3 0x03 0x67

2 0x02 0x45

1 0x01 0x23

0 0x00 0x01

Little Endian
Word at address 0x0C: 0x 77 66 55 44

Word at address 0x08: 0x 33 22 11 00

Word at address 0x04: 0x EF CD AB 89

Word at address 0x00: 0x 67 45 23 01

3

7

B

F

…

2

6

A

E

…

1

5

9

D

…

0

4

8

C

…

67

EF

33

77

…

45

CD

22

66

…

23

AB

11

55

…

01

89

00

44

…

Big Endian
Word at address 0x0C: 0x 44 55 66 77

Word at address 0x08: 0x 00 11 22 33

Word at address 0x04: 0x 89 AB CD EF

Word at address 0x00: 0x 01 23 45 67

0

4

8

C

…

1

5

9

D

…

2

6

A

E

…

3

7

B

F

…

01

89

00

44

…

23

AB

11

55

…

45

CD

22

66

…

67

EF

33

77

…

Addresses (hex):

Addresses (hex):

Memory

RISC-V: Little Endian
ADDR3 ADDR2 ADDR1 ADDR0
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001
• Hexadecimal number:

0xFD34AB88 (4,248,087,432ten) =>
– Byte 0: 0x88 (136ten)
– Byte 1: 0xAB (171ten)
– Byte 2: 0x34 (52ten)
– Byte 3: 0xFD (253ten)

• Little Endian: Starts with the little end of a word:
– It starts with the smallest (least significant) Byte

3
7

11
15
…

2
6

10
14
…

1
5
9

13
…

0
4
8

12
…

Little Endian
Least significant byte in a word
(numbers are addresses)

32

0xFD
67

0x34
66

0xAB
54

0x88
64

Data:

Address: 64 address of word (e.g. int)
Address:

(E.g., 1025 = 0x401 = 0b 0100 0000 0001)

bit: 31 24 23 16 15 8 7 0

Great Idea #3: Principle of Locality /
Memory Hierarchy

33

Speed of Registers vs. Memory

• Given that
– Registers: 32 words (128 Bytes)
– Memory: Billions of bytes (2 GB to 16 GB on laptop)

• and the RISC principle is…
– Smaller is faster

• How much faster are registers than memory??
• About 100-500 times faster!
– in terms of latency of one access

34

Load from Memory to Register
• C code

int A[100]; /* A => x15 */
g = h + A[3]; /* h => x13 */

• Using Load Word (lw) in RISC-V:
lw x10,12(x15) # Reg x10 gets A[3]
add x11,x13,x10 # g = h + A[3]

Note: x15 – base register (pointer to A[0])
12 – offset in bytes

Offset must be a constant known at assembly time

Data flow

35

Store from Register to Memory
• C code

int A[100]; /* A => x15 */
A[10] = h + A[4]; /* h => x13 */

• Using Store Word (sw) in RISC-V:
lw x10,16(x15) # Temp reg x10 gets A[3]
add x10,x13,x10 # Temp reg x10 gets h + A[3]
sw x10,40(x15) # A[10] = h + A[3]

Note: x15 – base register (pointer)
16,40 – offsets in bytes

Data flow

36

Memory Alignment

• RISC-V does not require that integers be word
aligned...
– But it is very very bad if you don't make sure they are...

• Consequences of unaligned integers
– Slowdown: The processor is allowed to be a lot slower

when it happens
• In fact, a RISC-V processor may natively only support aligned

accesses, and do unaligned-access in software!
An unaligned load could take hundreds of times longer!

• Lack of atomicity: The whole thing doesn't happen at once... can
introduce lots of very subtle bugs

• So in practice, RISC-V requires integers to be aligned on
4- byte boundaries

37

Loading and Storing Bytes
• In addition to word data transfers

(lw, sw), RISC-V has byte data transfers:
– load byte: lb
– store byte: sb

• Same format as lw, sw

• E.g., lb x10,3(x11)
– contents of memory location with address = sum of “3” +

contents of register x11 is copied to the low byte position of
register x10.

byte
loaded

zzz zzzzx

This bit
…is copied to “sign-extend”

xxxx xxxx xxxx xxxx xxxx xxxxx10
:

RISC-V also has “unsigned

byte” loads (lbu) which zero

extends to fill register. Why

no unsigned store byte sbu?

38

Question! What’s in x12?

39

0x0

0x4

0x6

0xF

0xFFFFFFFF

addi x11,x0,0x4F6
sw x11,0(x5)
lb x12,1(x5)

A:
B:
C:
D:
E:

Question! What’s in x12?

40

0x8

0x85

0xC

0xBC

0XFFFFFF85

0XFFFFFFF8

0XFFFFFFC

0XFFFFFFBC

addi x11,x0,0x85BCF6
sw x11,0(x5)
lb x12,2(x5)

A:
B:
C:
D:
E:
F:
G:
H:

Actually:
invalid instruction:

immediate is too large;
details covered later

Question!
Which of the following is TRUE?

– A: add x10, x11, 4(x12) is valid in RV32

– B: can byte address 4GB of memory with an RV32
word

– C: imm must be multiple of 4 for lw x10, imm(x10)
to be valid

– D: None of the above

41

“And in Conclusion…”
• In RISC-V Assembly Language:
– Registers replace C variables
– One instruction (simple operation) per line
– Simpler is Better, Smaller is Faster

• In RV32, words are 32b
• RISC-V is Little Endian
• Instructions:

add, addi, sub,lw,sw,lb,lbu,sw
• Registers:

– 32 registers, referred to as x0 – x31
– Zero: x0

42

