
CS 110
Computer Architecture

Lecture 11:
Datapath

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Review

• Timing constraints for Finite State Machines
– Setup time, Hold Time, Clock to Q time

• Use muxes to select among inputs
– S control bits selects from 2S inputs
– Each input can be n-bits wide, independent of S
– Can implement muxes hierarchically

• ALU can be implemented using a mux
– Coupled with basic block elements
– Adder/ Substractor & AND & OR & shift

2

Processor

Control

Datapath

Components of a Computer

3

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

The CPU
• Processor (CPU): the active part of the

computer that does all the work (data
manipulation and decision-making)

• Datapath: portion of the processor that
contains hardware necessary to perform
operations required by the processor

• Control: portion of the processor (also in
hardware) that tells the datapath what needs
to be done

4

One-Instruction-Per-Cycle RISC-V Machine
• One clock tick =>

one instruction

• Current state outputs
=> inputs to
combinational logic =>
outputs settle at the
values of state before
next clock edge

• Rising clock edge:
– all state elements

are updated with
combinational logic
outputs

– execution moves to
next clock cycle

Regist
ers

PC

Instr.
Mem

Data
Mem

Combinational
Logic

clock

5

What is special about
Instruction Memory?

Why is Instruction
Memory special?

Datapath and Control
• Datapath designed to support data transfers required

by instructions
• Controller causes correct transfers to happen

Controller
opcode, funct

in
st

ru
ct

io
n

m
em

or
y

+4

rs2
rs1
rd

re
gi

st
er

s
ALU

D
at

a
m

em
or

y

imm

PC

6

Stages of the Datapath : Overview

• Problem: a single, “monolithic” block that “executes an
instruction” (performs all necessary operations beginning with
fetching the instruction) would be too bulky and inefficient

• Solution: break up the process of “executing an instruction”
into stages, and then connect the stages to create the whole
datapath
– smaller stages are easier to design
– easy to optimize (change) one stage without touching the others

(modularity)

7

Five Stages of Instruction Execution
• Stage 1: Instruction Fetch (IF)

• Stage 2: Instruction Decode (ID)

• Stage 3: Execute (EX): ALU (Arithmetic-Logic
Unit)

• Stage 4: Memory Access (MEM)

• Stage 5: Register Write (WB)

8

Stages of Execution on Datapath

in
st

ru
ct

io
n

m
em

or
y

+4

rs2
rs1
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory 5. Register
Write

PC

9

Stages of Execution (1/5)

• There is a wide variety of RISC-V instructions: so
what general steps do they have in common?

• Stage 1: Instruction Fetch
– no matter what the instruction, the 32-bit

instruction word must first be fetched from memory
(the cache-memory hierarchy)

– also, this is where we Increment PC
(that is, PC = PC + 4, to point to the next instruction:
byte addressing so + 4)

10

Stages of Execution (2/5)
• Stage 2: Instruction Decode
– upon fetching the instruction, we next gather data

from the fields (decode all necessary instruction
data)

– first, read the opcode to determine instruction
type and field lengths

– second, (at the same time!) read in data from all
necessary registers
• for add, read two registers
• for addi, read one register

– third, generate the immediates
11

Stages of Execution (3/5)
• Stage 3: ALU (Arithmetic-Logic Unit)
– the real work of most instructions is done here:

arithmetic (+, -, *, /), shifting, logic (&, |)

– what about loads and stores?
• lw t0, 40(t1)
• the address we are accessing in memory = the

value in t1 PLUS the value 40
• so we do this addition in this stage

– also does stuff for other instructions…
12

Stages of Execution (4/5)

• Stage 4: Memory Access
– actually only the load and store instructions do

anything during this stage; the others remain idle
during this stage or skip it all together

– since these instructions have a unique step, we
need this extra stage to account for them

– as a result of the cache system, this stage is
expected to be fast

13

Stages of Execution (5/5)

• Stage 5: Register Write
– most instructions write the result of some

computation into a register
– examples: arithmetic, logical, shifts, loads, jumps
– what about stores, branches?
• don’t write anything into a register at the end
• these remain idle during this fifth stage

14

Stages of Execution on Datapath

in
st

ru
ct

io
n

m
em

or
y

+4

rs2
rs1
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory 5. Register
Write

PC

15

• Combinational Elements

• Storage Elements + Clocking Methodology
• Building Blocks

Datapath Components:
Combinational

32
A

B
32

Y
32

Select

M
U
X

Multiplexer

32

32

A

B
32

Result

OP

ALU

ALU

32

32

A

B
32 Sum

CarryOut

CarryIn

Adder

Adder

16

Datapath Elements: State and Sequencing (1/3)

• Register

• Write Enable:
– Negated (or deasserted) (0):

Data Out will not change
– Asserted (1): Data Out will become Data In on

positive edge of clock

clk

Data In

Write Enable

N N

Data Out

17

• Register file (regfile, RF) consists of 32 registers
– Two 32-bit output busses: busA and busB
– One 32-bit input bus: busW
– In one clock cycle can read two registers

and write another!

• Register is selected by:
– RA (number) selects the register to put on busA (data)
– RB (number) selects the register to put on busB (data)
– RW (number) selects the register to be written

via busW (data) when Write Enable is 1

• Clock input (clk)
– Clk input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic block:

• RA or RB valid Þ busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RW RA RB

32 x 32-bit
Registers

Datapath Elements: State and Sequencing (2/3)

18

Memory Size of
Register File?

• “Magic” Memory
– One input bus: Data In
– One output bus: Data Out

• Memory word is found by:
– For Read: Address selects the word to put on Data Out
– For Write: Set Write Enable = 1: address selects the memory

word to be written via the Data In bus

• Clock input (CLK)
– CLK input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic block:

Address valid Þ Data Out valid after “access time”

Clk

Data In

Write Enable

32 32
DataOut

Address

Datapath Elements: State and Sequencing (3/3)

19

State Required by RV32I ISA
Each instruction reads and updates this state during execution:
• Registers (x0..x31)

– Register file (regfile) Reg holds 32 registers x 32 bits/register: Reg[0]..Reg[31]
– First register read specified by rs1 field in instruction
– Second register read specified by rs2 field in instruction
– Write register (destination) specified by rd field in instruction
– x0 is always 0 (writes to Reg[0]are ignored)

• Program Counter (PC)
– Holds address of current instruction

• Memory (MEM)
– Holds both instructions & data, in one 32-bit byte-addressed memory space
– We’ll use separate memories for instructions (IMEM) and data (DMEM)

• These are placeholders for instruction and data caches
– Instructions are read (fetched) from instruction memory (assume IMEM read-only)
– Load/store instructions access data memory

20

Review: Complete RV32I ISA

• Need datapath and control to implement these instructions

Not in CA

21

Implementing the add instruction

add rd, rs1, rs2

• Instruction makes two changes to machine’s
state:
– Reg[rd] = Reg[rs1] + Reg[rs2]
– PC = PC + 4

0000000 rs2 rs1 000 rd 0110011

Reg-Reg OPrdaddadd rs2 rs1

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

22

Datapath for add

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWriteEnable (RegWEn)
=1

add 5 5 add Reg-Reg OP5

31 25 20 15 71224 19 14 11 6 0
0000000 rs2 rs1 000 rd opcode

Reg[rd] = Reg[rs1] + Reg[rs2]PC = PC + 4

23

Timing Diagram for add

1000 1004PC

1004 1008PC+4

add x1,x2,x3 add x6,x7,x9inst[31:0]

Clock

time

Reg[2] Reg[7]Reg[rs1]

Reg[2]+Reg[3]alu Reg[7]+Reg[9]

Reg[3] Reg[9]Reg[rs2]

???Reg[1] Reg[2]+Reg[3]

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20]
ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]clock RegWEn

24

Implementing the sub instruction

sub rd, rs1, rs2

• Almost the same as add, except now have
to subtract operands instead of adding
them

• inst[30] selects between add and
subtract

31 25 20 15 71224 19 14 11 6 0
0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011

add
sub

25

Datapath for add/sub

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Control logic

RegWEn
(1=Write, 0=NoWrite)

ALUSel
(add=0/sub=1)

Inst[31:0]

26

Implementing other R-Format instructions

• All implemented by decoding funct3 and funct7
fields and selecting appropriate ALU function

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011
0000000 rs2 rs1 001 rd 0110011

add
sub
sll

0000000 rs2 rs1 010 rd 0110011 slt
0000000 rs2 rs1 011 rd 0110011
0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 101 rd 0110011 srl
0100000 rs2 rs1 101 rd 0110011 sra
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

sltu

27

Question
• Select the statements that are TRUE:

A. The Clk->Q delay is not important for the Datapath.
B. The Datapath for add and sub are identical – the only

difference is that the controller is signaling the ALU
which instruction to execute.

C. The result of an instruction is written into the
destination register as soon as it is ready.

D. The controller is getting the instruction during the
fetch stage.

E. The datapath introduced so far contains two adders.

28

Implementing I-Format - addi
instruction

• RISC-V Assembly Instruction:
addi x15,x1,-50

111111001110 00001 000 01111 0010011

OP-Immrd=15addimm=-50 rs1=1

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12

29

Datapath for add/sub

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn
(1=Write, 0=NoWrite)

ALUSel
(add=0/sub=1)

Immediate should
be here

30

Adding addi to Datapath

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn
(1=Write, 0=NoWrite)

ALUSel
(add=0/
sub=1)

BSel
(rs2=0/
Imm=1)

0

1

Imm[31:0]

31

Adding addi to Datapath

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn=1 ALUSel=
add

BSel
(rs2=0/
Imm=1)

Bsel = 1

ImmSel
=I

0

1

Imm[31:0]
Imm.
Gen

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst
[31:20]

32

I-Format immediates

inst[31:0]

------inst[31]-(sign-extension)------- inst[30:20]

imm[31:0]

Imm.
Gen

inst[31:20] imm[31:0]

ImmSel=I

• High 12 bits of instruction (inst[31:20]) copied to
low 12 bits of immediate (imm[11:0])

• Immediate is sign-extended by copying value of
inst[31] to fill the upper 20 bits of the immediate
value (imm[31:12])

-inst[31]-
31 30 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]
12

33

R+I Datapath

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst<31:0>

Control logic

RegWEn ALUSelBSel

0

1

Imm[31:0]
Imm.
Gen

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst
[31:20]

Works for all other I-format
arithmetic instructions
(slti,sltiu,andi,
ori,xori,slli,srli,
srai) just by
changing ALUSel

ImmSel

34

Add lw
• RISC-V Assembly Instruction (I-type): lw x14, 8(x2)

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12
offset[11:0] base width dest LOAD

31 20 15 71219 14 11 6 0
00010 010 01110 0000011000000001000

imm= +8 rs1=2 LW rd=14 LOAD

• The 12-bit signed immediate is added to the base address
in register rs1 to form the memory address

• This is very similar to the add-immediate operation but used to
create address not to create final result

• The value loaded from memory is stored in register rd
35

Adding lw to Datapath

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn
=1

ALUSel
=Add

Bsel
=1

WBSel
=0

MemRW
=Read

0

1

Imm[31:0]
Imm.
Gen

+4
Add

clk

addr
inst

IMEM DMEM

addr
DataR

PC
pc+4

Inst
[31:20]

1

0

clk

ImmSel
=I

mem

wb

pc

36

All RV32 Load Instructions

• Supporting the narrower loads requires additional logic
to extract the correct byte/halfword from the value
loaded from memory, and sign- or zero-extend the result
to 32 bits before writing back to register file.
– It is just a mux mod

funct3 field encodes size and
‘signedness’ of load data

imm[11:0] rs1 000 rd 0000011
imm[11:0] rs1 001 rd 0000011
imm[11:0] rs1 010 rd 0000011

lb
lh
lw

imm[11:0] rs1 100 rd 0000011 lbu
imm[11:0] rs1 101 rd 0000011 lhu

37

Adding sw Instruction
• sw: Reads two registers, rs1 for base memory

address, and rs2 for data to be stored, as well
immediate offset! sw x14, 8(x2)

0000000 01110 00010 010 01000 0100011

combined 12-bit offset = 80000000 01000

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

STOREoffset[4:0]
=8

SWoffset[11:5]
=0

rs2=14 rs1=2

38

Datapath with lw

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn ALUSelBSel MemRW

0

1

Imm[31:0]
Imm.
Gen

+4
Add

clk

addr
inst

IMEM DMEM

addr
DataR

PC
pc+4

Inst
[31:20]

1

0

clk

WBSelImmSel

mem

wb

pc

39

Adding sw to Datapath

+4
Add

clk

addr
inst

IMEM

PC
pc+4

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu
Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn
=0

ALUSel
=Add

Bsel
=1

MemRW
=Write

0

1

Imm[31:0]
Imm.
Gen

+4
Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC
pc+4

Inst
[31:7]

1

0

clk

WBSel
=*
(*=Don’t care)

ImmSel
=S

mem
pc

+4
Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC
pc+4

wb

40

I+S Immediate Generation

inst[31:0]

SI

1 6
5 5

• Just need a 5-bit mux to select between two positions
where low five bits of immediate can reside in instruction

• Other bits in immediate are wired to fixed positions in
instruction

imm[11:5] rs2 rs1 funct3 imm[4:0] S-opcode

25 2431 20 15 71219 14 11 6 0
rs1 funct3 rd I-opcodeimm[11:0]

S
I

inst[24:20]inst[31] (sign extension) Iinst[30:25]
inst[11:7]inst[31] (sign extension) inst[30:25] S

31 511 10 4 0

I/S

imm[31:0]

41

Datapath So Far

+4
Add

addr
inst

IMEM

pc+4
Inst[24:20] ALU

+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn ALUSelBsel MemRW

0

1

Imm[31:0]
Imm.
Gen

Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC

Inst
[31:7]

1

0

clk

WBSelImmSel

mem

wb

pc

42

Implementing Branches

• B-format is mostly same as S-Format, with two register sources
(rs1/ rs2) and a 12-bit immediate

• But now immediate represents values -4096 to +4094 in 2-byte
increments

• The 12 immediate bits encode even 13-bit signed byte offsets
(lowest bit of offset is always zero, so no need to store it)

1 6 5 3 74

31 30 24 15 71225 20 14 11 6 0
imm[12] rs2 rs1 funct3 imm[4:1] opcodeimm[10:5] imm[11]

19 8

5 1
BRANCHoffset[12|10:5] rs1 funct3rs2 offset[4:1|11]

43

RISC-V Immediate Encoding
Instruction encodings, inst[31:0]

32-bit immediates produced, imm[31:0]

Only bit 7 of instruction changes role in
immediate between S and B

Upper bits sign-extended from inst[31]
always

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

31 25 12 1524 11 10 4 0

30 8

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

R-type

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

inst[30:25]inst[24:21] inst[20] I-imm.-inst[31]-

inst[30:25] inst[11:8] inst[7] S-imm.-inst[31]-

inst[30:25] inst[11:8] 0 B-imm.-inst[31]- inst[7]

44
Only one bit changes position between S and B, so only need
two single-bit 2-way mux!

Datapath So Far

+4
Add

addr
inst

IMEM

pc+4
Inst[24:20] ALU

+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn ALUSelBsel MemRW

0

1

Imm[31:0]
Imm.
Gen

Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC

Inst
[31:7]

1

0

clk

WBSelImmSel

mem

wb

pc

45

Branches

• Different change to the state:

– PC =

• Six branch instructions:
BEQ, BNE, BLT, BGE, BLTU, BGEU

• Need to compute PC + immediate and to
compare values of rs1 and rs2
– But have only one ALU – need more hardware

PC + 4, branch not taken
PC + immediate, branch taken

46

Adding Branches

+4
Add

addr
inst

IMEM

pc+4
Inst[24:20] ALU

+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn
=0

ALUSel
=Add

Bsel
=1

MemRW
=ReadAsel

=1

0

1

Imm[31:0]
Imm.
Gen

Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC

Inst
[31:7]

1

0

clk

WBSel
=*
(*=Don’t care)

Branch
Comp

1

0

ImmSel
=B

1

0

PCSel=
taken/not taken

BrUn
BrEq

BrLT

mem

wb

pc

47

