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Review

• Timing constraints for Finite State Machines
– Setup time, Hold Time, Clock to Q time

• Use muxes to select among inputs
– S control bits selects from 2S inputs
– Each input can be n-bits wide, independent of S
– Can implement muxes hierarchically

• ALU can be implemented using a mux
– Coupled with basic block elements
– Adder/ Substractor & AND & OR & shift
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The CPU
• Processor (CPU): the active part of the 

computer that does all the work (data 
manipulation and decision-making)

• Datapath: portion of the processor that 
contains hardware necessary to perform 
operations required by the processor

• Control: portion of the processor (also in 
hardware) that tells the datapath what needs 
to be done
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One-Instruction-Per-Cycle RISC-V Machine
• One clock tick => 

one instruction

• Current state outputs 
=> inputs to 
combinational logic => 
outputs settle at the 
values of state before  
next clock edge

• Rising clock edge: 
– all state elements 

are updated with 
combinational logic 
outputs

– execution moves to 
next clock cycle
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Datapath and Control
• Datapath designed to support data transfers required 

by instructions
• Controller causes correct transfers to happen 
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Stages of the Datapath : Overview

• Problem: a single, “monolithic” block that “executes an 
instruction” (performs all necessary operations beginning with 
fetching the instruction) would be too bulky and inefficient

• Solution: break up the process of “executing an instruction” 
into stages, and then connect the stages to create the whole 
datapath
– smaller stages are easier to design
– easy to optimize (change) one stage without touching the others 

(modularity)
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Five Stages of Instruction Execution
• Stage 1: Instruction Fetch (IF)

• Stage 2: Instruction Decode (ID)

• Stage 3: Execute (EX): ALU (Arithmetic-Logic 
Unit)

• Stage 4: Memory Access (MEM)

• Stage 5: Register Write (WB)
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Stages of Execution on Datapath
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Stages of Execution (1/5)

• There is a wide variety of RISC-V instructions: so 
what general steps do they have in common?

• Stage 1: Instruction Fetch
– no matter what the instruction, the 32-bit 

instruction word must first be fetched from memory 
(the cache-memory hierarchy)

– also, this is where we Increment PC 
(that is, PC = PC + 4, to point to the next instruction: 
byte addressing so + 4)
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Stages of Execution (2/5)
• Stage 2: Instruction Decode
– upon fetching the instruction, we next gather data 

from the fields (decode all necessary instruction 
data)

– first, read the opcode to determine instruction 
type and field lengths

– second, (at the same time!) read in data from all 
necessary registers
• for add, read two registers
• for addi, read one register

– third, generate the immediates
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Stages of Execution (3/5)
• Stage 3: ALU (Arithmetic-Logic Unit)
– the real work of most instructions is done here: 

arithmetic (+, -, *, /), shifting, logic (&, |)

– what about loads and stores?
• lw t0, 40(t1)
• the address we are accessing in memory = the 

value in t1 PLUS the value 40
• so we do this addition in this stage

– also does stuff for other instructions…
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Stages of Execution (4/5)

• Stage 4: Memory Access
– actually only the load and store instructions do 

anything during this stage; the others remain idle 
during this stage or skip it all together

– since these instructions have a unique step, we 
need this extra stage to account for them

– as a result of the cache system, this stage is 
expected to be fast
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Stages of Execution (5/5)

• Stage 5: Register Write
– most instructions write the result of some 

computation into a register
– examples: arithmetic, logical, shifts, loads, jumps
– what about stores, branches?
• don’t write anything into a register at the end
• these remain idle during this fifth stage
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Stages of Execution on Datapath
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• Combinational Elements

• Storage Elements + Clocking Methodology
• Building Blocks

Datapath Components: 
Combinational
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Datapath Elements: State and Sequencing (1/3)

• Register

• Write Enable:
– Negated (or deasserted) (0): 

Data Out will not change
– Asserted (1): Data Out will become Data In on 

positive edge of clock

clk

Data In

Write Enable

N N

Data Out
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• Register file (regfile, RF) consists of 32 registers
– Two 32-bit output busses: busA and busB
– One 32-bit input bus: busW
– In one clock cycle can read two registers

and write another!

• Register is selected by:
– RA (number) selects the register to put on busA (data)
– RB (number) selects the register to put on busB (data)
– RW (number) selects the register to be  written

via busW (data) when Write Enable is 1

• Clock input (clk) 
– Clk input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic block:

• RA or RB valid Þ busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RW RA RB

32 x 32-bit
Registers

Datapath Elements: State and Sequencing (2/3)
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• “Magic” Memory
– One input bus: Data In
– One output bus: Data Out

• Memory word is found by:
– For Read: Address selects the word to put on Data Out
– For Write: Set Write Enable = 1: address selects the memory 

word to be written via the Data In bus

• Clock input (CLK) 
– CLK input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic block: 

Address valid Þ Data Out valid after “access time”

Clk

Data In

Write Enable

32 32
DataOut

Address

Datapath Elements: State and Sequencing (3/3)
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State Required by RV32I ISA
Each instruction reads and updates this state during execution:
• Registers (x0..x31)

– Register file (regfile) Reg holds 32 registers x 32 bits/register: Reg[0]..Reg[31]
– First register read specified by rs1 field in instruction
– Second register read specified by rs2 field in instruction
– Write register (destination) specified by rd field in instruction
– x0 is always 0 (writes to Reg[0]are ignored)

• Program Counter (PC)
– Holds address of current instruction

• Memory (MEM)
– Holds both instructions & data, in one 32-bit byte-addressed memory space
– We’ll use separate memories for instructions (IMEM) and data (DMEM)

• These are placeholders for instruction and data caches
– Instructions are read (fetched) from instruction memory (assume IMEM read-only)
– Load/store instructions access data memory
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Review: Complete RV32I ISA

• Need datapath and control to implement these instructions

Not in CA
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Implementing the add instruction

add rd, rs1, rs2

• Instruction makes two changes to machine’s 
state:
– Reg[rd] = Reg[rs1] + Reg[rs2]
– PC = PC + 4

0000000 rs2 rs1 000 rd 0110011

Reg-Reg OPrdaddadd rs2 rs1

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode
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Datapath for add
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add 5 5 add Reg-Reg OP5

31 25 20 15 71224 19 14 11 6 0
0000000 rs2 rs1 000 rd opcode

Reg[rd] = Reg[rs1] + Reg[rs2]PC = PC + 4
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Timing Diagram for add

1000 1004PC

1004 1008PC+4

add x1,x2,x3 add x6,x7,x9inst[31:0]

Clock

time

Reg[2] Reg[7]Reg[rs1]

Reg[2]+Reg[3]alu Reg[7]+Reg[9]

Reg[3] Reg[9]Reg[rs2]

???Reg[1] Reg[2]+Reg[3]
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Implementing the sub instruction

sub rd, rs1, rs2

• Almost the same as add, except now have 
to subtract operands instead of adding 
them

• inst[30] selects between add and 
subtract

31 25 20 15 71224 19 14 11 6 0
0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011

add
sub
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Datapath for add/sub
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Implementing other R-Format instructions

• All implemented by decoding funct3 and funct7 
fields and selecting appropriate ALU function

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011
0000000 rs2 rs1 001 rd 0110011

add
sub
sll

0000000 rs2 rs1 010 rd 0110011 slt
0000000 rs2 rs1 011 rd 0110011
0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 101 rd 0110011 srl
0100000 rs2 rs1 101 rd 0110011 sra
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

sltu
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Question
• Select the statements that are TRUE:

A. The Clk->Q delay is not important for the Datapath.
B. The Datapath for add and sub are identical – the only 

difference is that the controller is signaling the ALU 
which instruction to execute.

C. The result of an instruction is written into the 
destination register as soon as it is ready.

D. The controller is getting the instruction during the 
fetch stage.

E. The datapath introduced so far contains two adders.
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Implementing I-Format - addi
instruction

• RISC-V Assembly Instruction:
addi x15,x1,-50

111111001110 00001 000 01111 0010011

OP-Immrd=15addimm=-50 rs1=1

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12
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Datapath for add/sub
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Adding addi to Datapath
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Adding addi to Datapath
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I-Format immediates

inst[31:0]

------inst[31]-(sign-extension)------- inst[30:20]

imm[31:0]

Imm.
Gen

inst[31:20] imm[31:0]

ImmSel=I

• High 12 bits of instruction (inst[31:20]) copied to 
low 12 bits of immediate (imm[11:0])

• Immediate is sign-extended by copying value of 
inst[31] to fill the upper 20 bits of the immediate 
value (imm[31:12])

-inst[31]-
31 30 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]
12
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R+I Datapath
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Add lw
• RISC-V Assembly Instruction (I-type): lw x14, 8(x2)

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12
offset[11:0] base width dest LOAD

31 20 15 71219 14 11 6 0
00010 010 01110 0000011000000001000

imm= +8 rs1=2 LW rd=14 LOAD

• The 12-bit signed immediate is added to the base address 
in register rs1 to form the memory address

• This is very similar to the add-immediate operation but used to 
create address not to create final result  

• The value loaded from memory is stored in register rd
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Adding lw to Datapath
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All RV32 Load Instructions

• Supporting the narrower loads requires additional logic 
to extract the correct byte/halfword from the value 
loaded from memory, and sign- or zero-extend the result 
to 32 bits before writing back to register file.
– It is just a mux mod

funct3 field encodes size and 
‘signedness’ of load data

imm[11:0] rs1 000 rd 0000011
imm[11:0] rs1 001 rd 0000011
imm[11:0] rs1 010 rd 0000011

lb
lh
lw

imm[11:0] rs1 100 rd 0000011 lbu
imm[11:0] rs1 101 rd 0000011 lhu
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Adding sw Instruction
• sw: Reads two registers, rs1 for base memory 

address, and rs2 for data to be stored, as well 
immediate offset!           sw x14, 8(x2)

0000000 01110 00010 010 01000 0100011

combined 12-bit offset = 80000000 01000

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

STOREoffset[4:0]
=8

SWoffset[11:5]
=0

rs2=14 rs1=2
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Datapath with lw
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Adding sw to Datapath
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I+S Immediate Generation

inst[31:0]

SI

1 6
5 5

• Just need a 5-bit mux to select between two positions 
where low five bits of immediate can reside in instruction

• Other bits in immediate are wired to fixed positions in 
instruction

imm[11:5] rs2 rs1 funct3 imm[4:0] S-opcode

25 2431 20 15 71219 14 11 6 0
rs1 funct3 rd I-opcodeimm[11:0]

S
I

inst[24:20]inst[31] (sign extension) Iinst[30:25]
inst[11:7]inst[31] (sign extension) inst[30:25] S

31 511 10 4 0

I/S

imm[31:0]
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Datapath So Far
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Implementing Branches

• B-format is mostly same as S-Format, with two register sources 
(rs1/ rs2) and a 12-bit immediate

• But now immediate represents values -4096 to +4094 in 2-byte 
increments

• The 12 immediate bits encode even 13-bit signed byte offsets 
(lowest bit of offset is always zero, so no need to store it) 

1 6 5 3 74

31 30 24 15 71225 20 14 11 6 0
imm[12] rs2 rs1 funct3 imm[4:1] opcodeimm[10:5] imm[11]

19 8

5 1
BRANCHoffset[12|10:5] rs1 funct3rs2 offset[4:1|11]
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RISC-V Immediate Encoding
Instruction encodings, inst[31:0]

32-bit immediates produced, imm[31:0]

Only bit 7 of instruction changes role in 
immediate between S and B

Upper bits sign-extended from inst[31] 
always

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

31 25 12 1524 11 10 4 0

30 8

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

R-type

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

inst[30:25]inst[24:21] inst[20] I-imm.-inst[31]-

inst[30:25] inst[11:8] inst[7] S-imm.-inst[31]-

inst[30:25] inst[11:8] 0 B-imm.-inst[31]- inst[7]

44
Only one bit changes position between S and B, so only need 
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Datapath So Far
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Branches

• Different change to the state:

– PC =

• Six branch instructions: 
BEQ, BNE, BLT, BGE, BLTU, BGEU

• Need to compute PC + immediate and to 
compare values of rs1 and rs2
– But have only one ALU – need more hardware

PC + 4, branch not taken
PC + immediate, branch taken
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Adding Branches
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