# CS 110 Computer Architecture Lecture 19: Amdahl's Law, Data-level Parallelism

#### Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/21s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkeley's CS61C

## New-School Machine Structures (It's a bit more complicated!)

Software

- Parallel Requests
   Assigned to computer
   e.g., Search "Katz"
- Parallel Threads
   Assigned to core
   e.g., Lookup, Ads
- Parallel Instructions
   >1 instruction @ one time
   e.g., 5 pipelined instructions
- Parallel Data
   >1 data item @ one time
   e.g., Add of 4 pairs of words
- Hardware descriptions
   All gates @ one time
- Programming Languages

Hardware

Warehouse Scale Computer

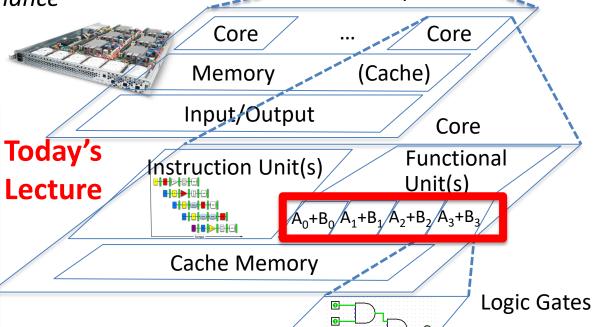
Harness
Parallelism &
Achieve High
Performance



Computer

Smart Phone





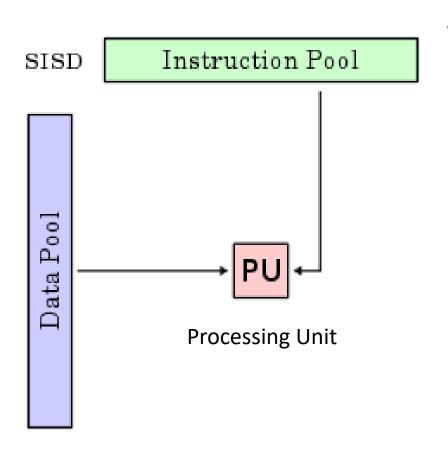
## Why Parallel Processing?

- CPU Clock Rates are no longer increasing
  - Technical & economic challenges
    - Advanced cooling technology too expensive or impractical for most applications
    - Energy costs are prohibitive
- Parallel processing is only path to higher speed

## Using Parallelism for Performance

- Two basic ways:
  - Multiprogramming
    - run multiple independent programs in parallel
    - "Easy"
  - Parallel computing
    - run one program faster
    - "Hard"
- We'll focus on parallel computing for next few lectures

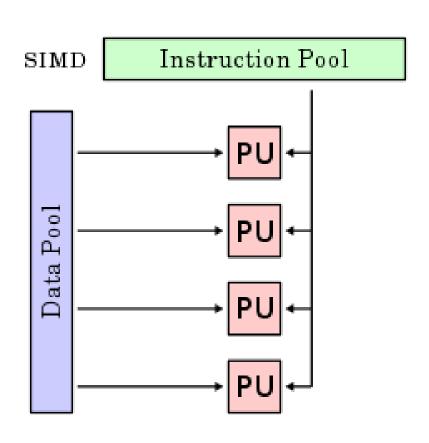
## Single-Instruction/Single-Data Stream (SISD)



- Sequential computer that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines
  - E.g. Our RISC-V processor
  - Superscalar is SISD
     because programming
     model is sequential

This is what we did up to now in CA.

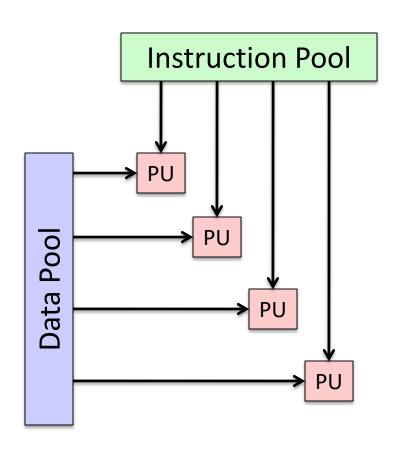
## Single-Instruction/Multiple-Data Stream (SIMD or "sim-dee")



 SIMD computer exploits multiple data streams against a single instruction stream to operations that may be naturally parallelized, e.g., Intel SIMD instruction extensions or NVIDIA Graphics Processing Unit (GPU)

Today's topic.

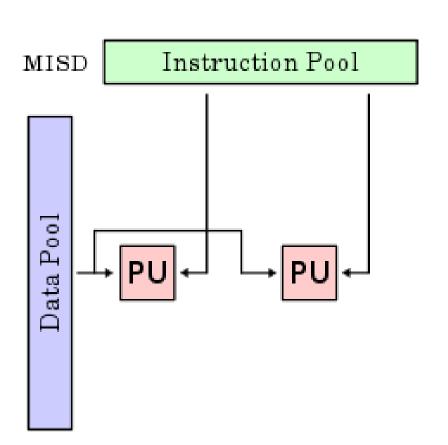
## Multiple-Instruction/Multiple-Data Streams (MIMD or "mim-dee")



- Multiple autonomous processors simultaneously executing different instructions on different data.
  - MIMD architectures include multicore and Warehouse-Scale Computers

Next lecture & following.

## Multiple-Instruction/Single-Data Stream (MISD)



- Multiple-Instruction,
   Single-Data stream
   computer that exploits
   multiple instruction
   streams against a single
   data stream.
  - Rare, mainly of historical interest only

Few applications. Not covered in CA.

## Flynn\* Taxonomy, 1966

|                        |          | Data Streams            |                                     |  |
|------------------------|----------|-------------------------|-------------------------------------|--|
|                        |          | Single                  | Multiple                            |  |
| Instruction<br>Streams | Single   | SISD: Intel Pentium 4   | SIMD: SSE instructions of x86       |  |
|                        | Multiple | MISD: No examples today | MIMD: Intel Xeon e5345 (Clovertown) |  |

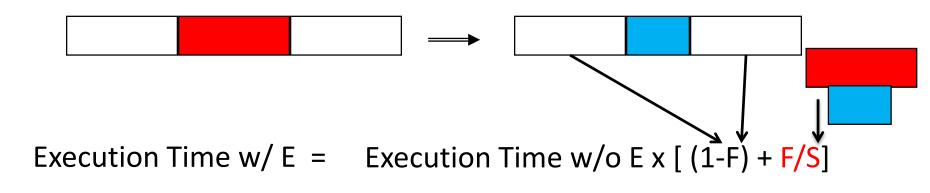
- Since about 2013, SIMD and MIMD most common parallelism in architectures – usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data ("SPMD")
  - Single program that runs on all processors of a MIMD
  - Cross-processor execution coordination using synchronization primitives
- SIMD (aka hw-level *data parallelism*): specialized function units, for handling lock-step calculations involving arrays
  - Scientific computing, signal processing, multimedia (audio/video processing)

\*Prof. Michael Flynn, Stanford

## Big Idea: Amdahl's (Heartbreaking) Law

Speedup due to enhancement E is

Suppose that enhancement E accelerates a fraction F (F < 1)
 of the task by a factor S (S>1) and the remainder of the task is
 unaffected



Speedup w/ E = 1/[(1-F) + F/S]

## Big Idea: Amdahl's Law

Speedup = 
$$\frac{1}{(1-F) + \frac{F}{S}}$$

Non-speed-up part

Example: the execution time of half of the program can be accelerated by a factor of 2.

What is the program speed-up overall?

$$\frac{1}{0.5 + 0.5} = \frac{1}{0.5 + 0.25} = 1.33$$

## Example #1: Amdahl's Law

Speedup w/ 
$$E = 1 / [(1-F) + F/S]$$

 Consider an enhancement which runs 20 times faster but which is only usable 25% of the time

Speedup w/ E = 
$$1/(.75 + .25/20) = 1.31$$

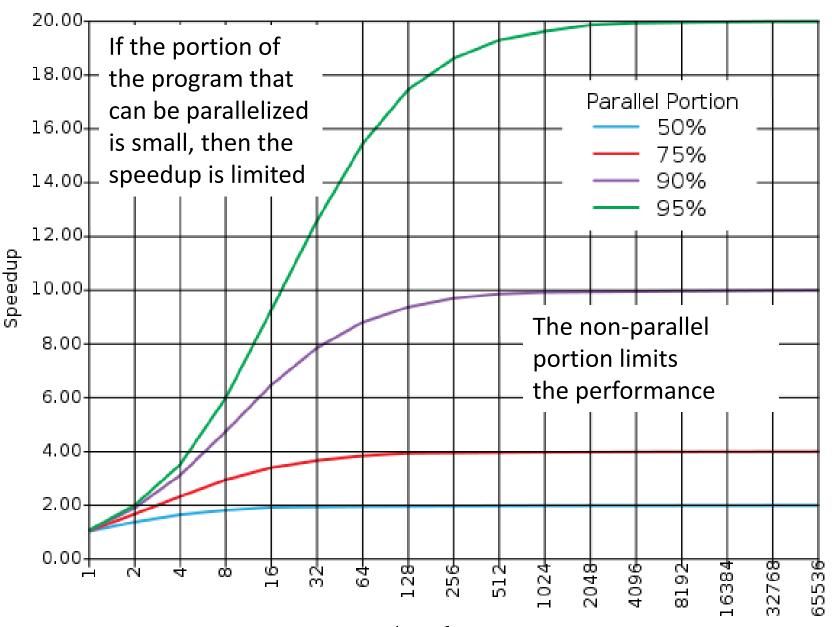
What if its usable only 15% of the time?

Speedup w/ E = 
$$1/(.85 + .15/20) = 1.17$$

- Amdahl's Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar!
- To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less

Speedup w/ E = 
$$1/(.001 + .999/100) = 90.99$$

#### Amdahl's Law



Number of Processors

## Strong and Weak Scaling

- To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
  - Strong scaling: when speedup can be achieved on a parallel processor without increasing the size of the problem
  - Weak scaling: when speedup is achieved on a parallel processor by increasing the size of the problem proportionally to the increase in the number of processors
- Load balancing is another important factor: every processor doing same amount of work
  - Just one unit with twice the load of others cuts speedup almost in half

## SIMD Architectures

- Data parallelism: executing same operation on multiple data streams
- Example to provide context:
  - Multiplying a coefficient vector by a data vector (e.g., in filtering)

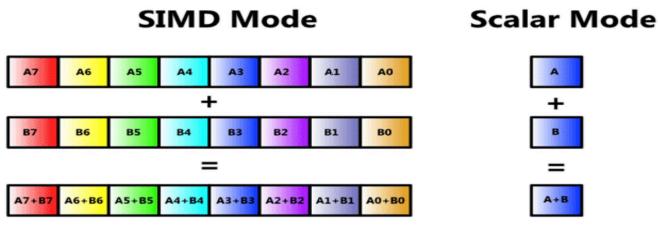
$$y[i] := c[i] \times x[i], 0 \le i < n$$

- Sources of performance improvement:
  - One instruction is fetched & decoded for entire operation
  - Multiplications are known to be independent
  - Pipelining/ concurrency in memory access as well
  - Special functional units may be faster

## Intel "Advanced Digital Media Boost"

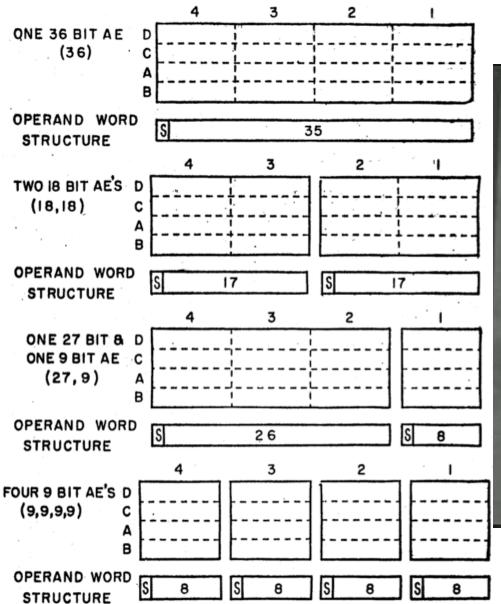
- To improve performance, Intel's SIMD instructions
  - Fetch one instruction, do the work of multiple instructions





### First SIMD Extensions:

## MIT Lincoln Labs TX-2, 1957

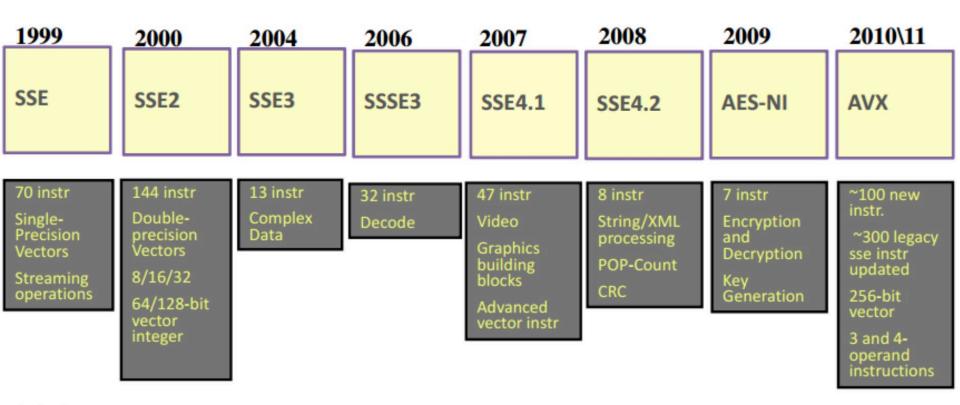




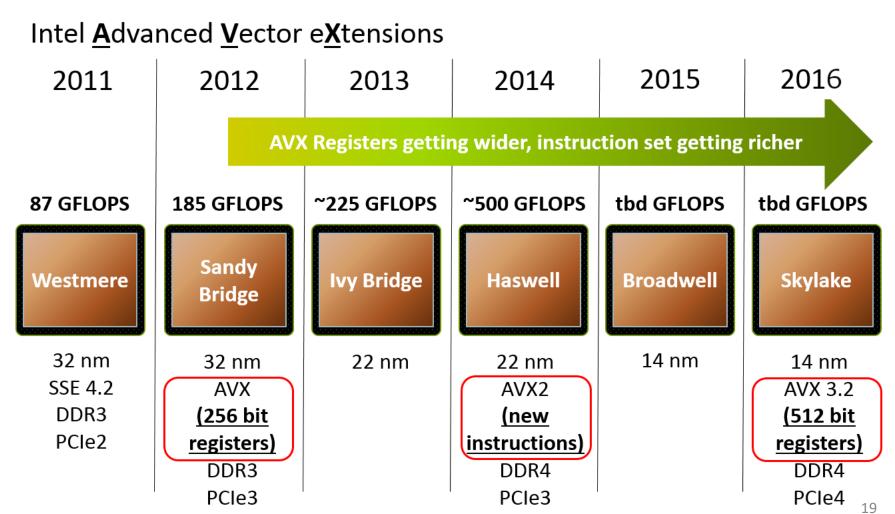
### Intel SIMD Extensions

 MMX 64-bit registers, reusing floating-point registers [1992]

#### **MMX 1997**

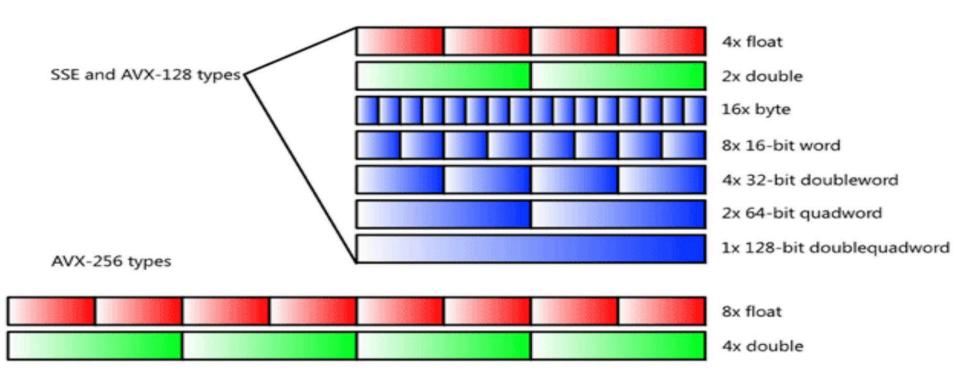


### Intel Advanced Vector eXtensions AVX



## Intel Architecture SSE SIMD Data Types

- Note: in Intel Architecture (unlike RISC-V) a word is 16 bits
  - Single-precision FP: Double word (32 bits)
  - Double-precision FP: Quad word (64 bits)
  - AVX-512 available (16x float and 8x double)



## SSE/SSE2 Floating Point Instructions

Move does both load and store

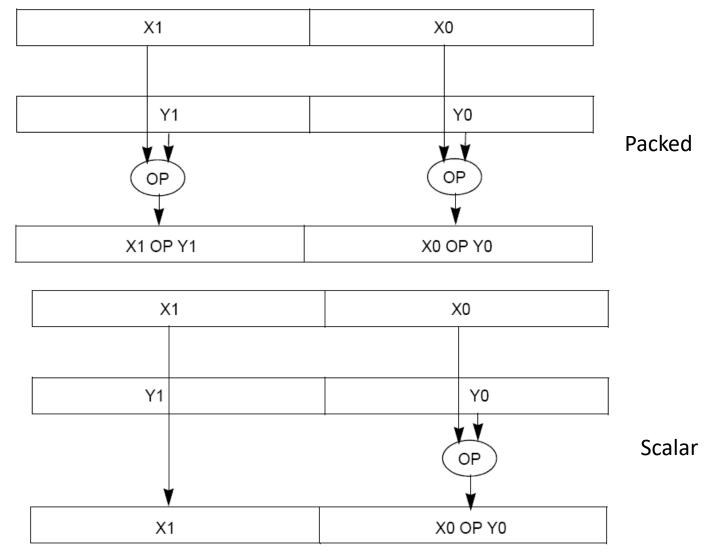
| Data transfer                          | Arithmetic                               | Compare              |
|----------------------------------------|------------------------------------------|----------------------|
| MOV{A/U}{SS/PS/SD/<br>PD} xmm, mem/xmm | ADD{SS/PS/SD/PD} xmm, mem/xmm            | CMP{SS/PS/SD/<br>PD} |
|                                        | <pre>SUB{SS/PS/SD/PD} xmm, mem/xmm</pre> |                      |
| MOV {H/L} {PS/PD} xmm, mem/xmm         | <pre>MUL{SS/PS/SD/PD} xmm, mem/xmm</pre> |                      |
|                                        | <pre>DIV{SS/PS/SD/PD} xmm, mem/xmm</pre> |                      |
|                                        | SQRT{SS/PS/SD/PD} mem/xmm                |                      |
|                                        | MAX {SS/PS/SD/PD} mem/xmm                |                      |
|                                        | MIN{SS/PS/SD/PD} mem/xmm                 |                      |

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register

- {SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register
- {PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
- {SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
- {PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
- {A} 128-bit operand is aligned in memory
- {U} means the 128-bit operand is unaligned in memory
- {H} means move the high half of the 128-bit operand
- {L} means move the low half of the 128-bit operand

## Packed and Scalar Double-Precision Floating-Point Operations



## X86 SIMD Intrinsics



#### Technologies

- □ MMX □ SSE
- ☐ SSE2 ☐ SSE3
- ☐ SSSE3
- ☐ SSE4.1
- ☐ SSE4.2 AVX
- □ AVX2
- □ FMA □ AVX-512
- ☐ KNC □ SVML
- □ Other

#### Categories

- Application-Targeted
- ☐ Arithmetic
- Bit Manipulation
- □ Cast
- Compare

```
mul pd
```

```
Synopsis
                                               Intrinsic
```

\_m256d \_mm256\_mul\_pd (\_\_m256d a, \_\_m256d b)

```
__m256d _mm256_mul_pd (__m256d a, _ m256d b) 🔩
#include "immintrin.h"
                                assembly instruction
Instruction: vmulpd vmm, vmm, vmm
CPUID Flags: AVX
```

#### Description

Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

#### Operation

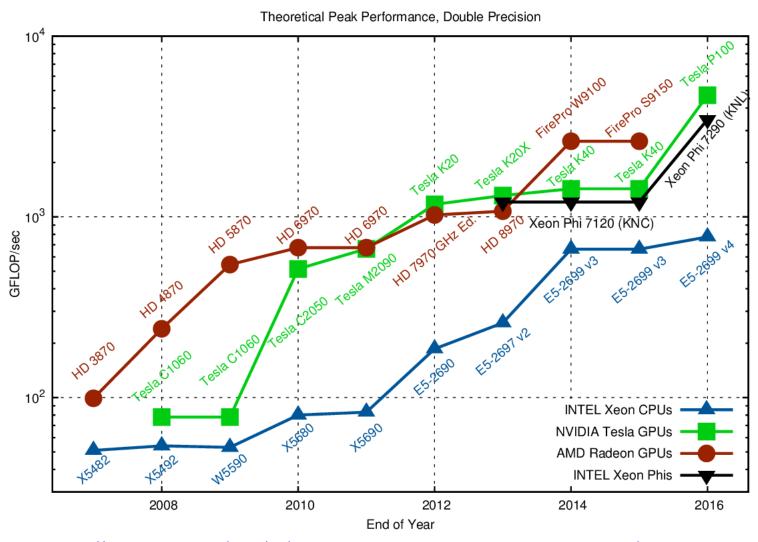
```
4 parallel multiplies
FOR i := 0 \text{ to } 3
      dst[i+63:i] := a[i+63:i] * b[i+63:i]
ENDFOR
dst[MAX:256] := 0
```

#### Performance

| Architecture | Latency | Throughput | instructions per clock cycle (CPI = 0.5) |
|--------------|---------|------------|------------------------------------------|
| Haswell      | 5       | 0.5        |                                          |
| Ivy Bridge   | 5       | 1          |                                          |
| Sandy Bridge | 5       | 1          |                                          |

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

## Raw Double-Precision Throughput



## **Example: SIMD Array Processing**

```
for each f in array
    f = sqrt(f)
for each f in array
    load f to the floating-point register
    calculate the square root
   write the result from the register to memory
for each 4 members in array
    load 4 members to the SSE register
   calculate 4 square roots in one operation
    store the 4 results from the register to memory
                   SIMD style
```

### Data-Level Parallelism and SIMD

- SIMD wants adjacent values in memory that can be operated in parallel
- Usually specified in programs as loops

```
for(i=1000; i>0; i=i-1)
x[i] = x[i] + s;
```

- How can reveal more data-level parallelism than available in a single iteration of a loop?
- Unroll loop and adjust iteration rate

## Looping in RISC-V

- D Standard Extension (double) builds upon F standard extension (float)
   Assumptions:
- t1 is initially the address of the element in the array with the highest address
- f0 contains the scalar value s
- 8(t2) is the address of the last element to operate on

#### CODE:

```
1 Loop: fld f2 , 0(t1)  # $f2=array element
2    fadd.d f10, f2, f0  # add s to $f2
3    fsd f10, 0(t1)  # store result
4    addi t1, t1, -8  # t1 = t1 -8
5    bne t1, t2, Loop # repeat loop if t1 != t2
```

#### Loop: fld f2 , 0(t1)3 fadd.d f10, f2, f0 fsd f10, 0(t1) 4 5 6 fld f3, -8(t1)fadd.d f11, f3, f0 8 fsd f11, -8(t1)9 10 fld f4, -16(t1)11 fadd.d f12, f4, f0 12 fsd f12, -16(t1)13 14 fld f5, -24(t1)15 fadd.d f13, f5, f0 16 fsd f13, -24(t1)17 t1, t1, -32 18 addi 19 bne t1, t2, Loop

## **Loop Unrolled**

#### NOTE:

- Only 1 Loop Overhead every 4 iterations
- This unrolling works if loop limit(mod 4) = 0
- 3. Using different registers for each iteration eliminates data hazards in pipeline

## Loop Unrolled Scheduled

```
Loop:
          fld
                  f2, 0(t1)
          fld
                  f3, -8(t1)
                                       4 Loads side-by-side:
                                       Could replace with 4-wide SIMD Load
          fld
                  f4, -16(t1)
          fld
                  f5, -24(t1)
 6
          fadd.d f10, f2, f0
 8
          fadd.d f11, f3, f0
                                       4 Adds side-by-side:
          fadd.d f12, f4, f0
                                       Could replace with 4-wide SIMD Add
 9
10
          fadd.d f13, f5, f0
11
12
          fsd
                  f10, 0(t1)
13
          fsd
                  f11, -8(1t1)
                                       4 Stores side-by-side:
14
          fsd
                  f12, -16(t1)
                                       Could replace with 4-wide SIMD Store
          fsd
                  f13, -24(t1)
15
16
17
          addi
                  t1, t1, -32
18
          bne
                  t1, t2, Loop
```

## Loop Unrolling in C

Instead of compiler doing loop unrolling, could do it yourself in C

```
for(i=1000; i>0; i=i-1)
x[i] = x[i] + s;
```

Could be rewritten What is downside of doing it in C?

```
for(i=1000; i>0; i=i-4) {
  x[i] = x[i] + s;
  x[i-1] = x[i-1] + s;
  x[i-2] = x[i-2] + s;
  x[i-3] = x[i-3] + s;
}
```

## **Generalizing Loop Unrolling**

- A loop of n iterations
- k copies of the body of the loop
- Assuming (n mod k) ≠ 0

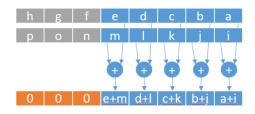
Then we will run the loop with 1 copy of the body (n mod k) times and with k copies of the body floor(n/k) times

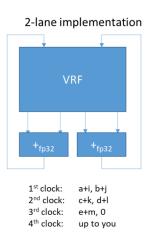
### RISC-V Vector Extension

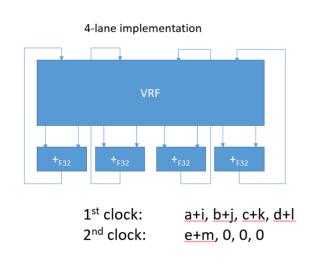
- 32 vector registers
- Need to setup length of data and number of parallel registers to work on before usage (vconfig)!
- vflw.s: vector float load word . stride: load a single word, put in v1 'vector length' times
- vsetvl: ask for certain vector length – hardware knows what it can do (maxvl)!

```
# assume x1 contains size of array
        # assume t1 contains address of array
        # assume x4 contains address of scalar s
 4
5
6
        vconfig 0x63 # 4 vregs, 32b data (float)
        vflw.s v1.s, 0(x4) # load scalar value into v1
    loop
 8
                            # will set vl and x2 both to min(maxvl, x1)
        vsetvl x2, x1
 9
        vflw v0, 0(t1)
                            # will load 'vl' elements out of 'vec'
10
        vfadd.s v2, v1, v0
                            # do the add
        vsw v2, 0(t1)
                            # store result back to 'vec'
11
12
        slli x5, x2, 2
                            # bytes consumed from 'vec' (x2 * sizeof(float))
13
                            # increment 'vec' pointer
        add t1, t1, x5
                            # subtract from total (x1) work done this iteration (x2)
14
        sub x1, x1, x2
        bne x1, x0, loop
                            # if x1 not yet zero, still work to do
```

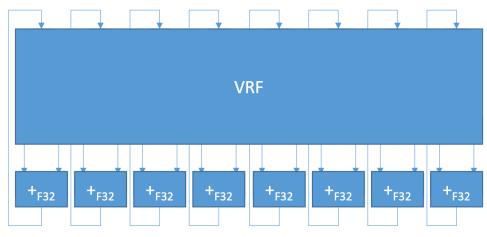
## Hardware Support up to CPU











Number of lanes is transparent to programmer Same code runs independent of # of lanes

1<sup>st</sup> clock:

a+i, b+j, c+k, d+l, e+m, 0, 0, 0

## Example: Add Two Single-Precision Floating-Point Vectors

#### Computation to be performed:

```
vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;
```

mov a ps: **mov**e from mem to XMM register, memory **a**ligned, **p**acked **s**ingle precision

add ps: add from mem to XMM register, packed single precision

mov a ps: **mov**e from XMM register to mem, memory **a**ligned, **p**acked **s**ingle precision

SSE Instruction Sequence:

(Note: Destination on the right in x86 assembly)

### Intel SSE Intrinsics

- Intrinsics are C functions and procedures for inserting assembly language into C code, including SSE instructions
  - With intrinsics, can program using these instructions indirectly
  - One-to-one correspondence between SSE instructions and intrinsics

## **Example SSE Intrinsics**

#### Intrinsics:

#### Corresponding SSE instructions:

• Vector data type:

\_m128d

Load and store operations:

\_mm\_load\_pd

\_mm\_store\_pd

\_mm\_loadu\_pd

\_mm\_storeu\_pd

MOVAPD/aligned, packed double

MOVAPD/aligned, packed double

MOVUPD/unaligned, packed double

MOVUPD/unaligned, packed double

Load and broadcast across vector

\_mm\_load1\_pd

MOVSD + shuffling/duplicating

• Arithmetic:

\_mm\_add\_pd

\_mm\_mul\_pd

ADDPD/add, packed double

MULPD/multiple, packed double

**Definition of Matrix Multiply:** 

$$C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j}$$

Definition of Matrix Multiply: 
$$C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j}$$

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} C_{1,1} = 1*1 + 0*2 = 1 & C_{1,2} = 1*3 + 0*4 = 3 \\ C_{2,1} = 0*1 + 1*2 = 2 & C_{2,2} = 0*3 + 1*4 = 4 \end{bmatrix}$$

**Definition of Matrix Multiply:** 

$$C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j}$$

Definition of Matrix Multiply: 
$$C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j}$$

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} C_{1,1} = 1*1 + 0*2 = 1 & C_{1,2} = 1*3 + 0*4 = 3 \\ C_{2,1} = 0*1 + 1*2 = 2 & C_{2,2} = 0*3 + 1*4 = 4 \end{bmatrix}$$

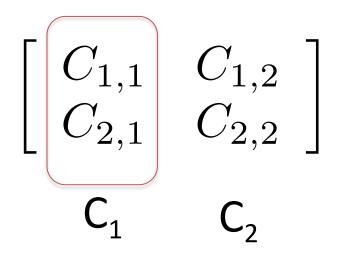
- Using the XMM registers
  - 64-bit/double precision/two doubles per XMM reg







Stored in memory in Column order

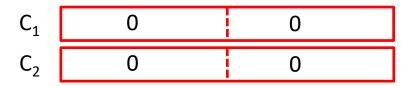


### Initialization



$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

#### Initialization



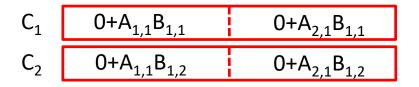
### • i = 1



\_mm\_load\_pd: Load 2 doubles into XMM
reg, Stored in memory in Column order

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

### First iteration intermediate result



c1 = \_mm\_add\_pd(c1,\_mm\_mul\_pd(a,b1));
c2 = \_mm\_add\_pd(c2,\_mm\_mul\_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers



\_mm\_load\_pd: Stored in memory in Column order

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \times \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

### First iteration intermediate result

$$C_1$$
  $0+A_{1,1}B_{1,1}$   $0+A_{2,1}B_{1,1}$   $C_2$   $0+A_{1,1}B_{1,2}$   $0+A_{2,1}B_{1,2}$ 

c1 = \_mm\_add\_pd(c1,\_mm\_mul\_pd(a,b1));
c2 = \_mm\_add\_pd(c2,\_mm\_mul\_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers



\_mm\_load\_pd: Stored in memory in Column order

$$B_{1}$$
  $B_{2,1}$   $B_{2,1}$   $B_{2,2}$ 

### Second iteration intermediate result

c1 = \_mm\_add\_pd(c1,\_mm\_mul\_pd(a,b1));
c2 = \_mm\_add\_pd(c2,\_mm\_mul\_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers



\_mm\_load\_pd: Stored in memory in Column order



# Example: 2 x 2 Matrix Multiply (Part 1 of 2)

```
#include <stdio.h>
// header file for SSE compiler intrinsics
#include <emmintrin.h>
// NOTE: vector registers will be represented in
    // comments as v1 = [a | b]
// where v1 is a variable of type m128d and
    // a, b are doubles
int main(void) {
  // allocate A,B,C aligned on 16-byte boundaries
  double A[4] attribute ((aligned (16)));
  double B[4] attribute ((aligned (16)));
  double C[4] attribute ((aligned (16)));
  int Ida = 2;
  int i = 0;
  // declare several 128-bit vector variables
  m128d c1,c2,a,b1,b2;
```

```
// Initialize A, B, C for example
/* A =
                      (note column order!)
    10
    01
   */
  A[0] = 1.0; A[1] = 0.0; A[2] = 0.0; A[3] = 1.0;
/* B =
                       (note column order!)
    13
    24
   */
  B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; B[3] = 4.0;
/* C =
                       (note column order!)
    00
    00
   */
  C[0] = 0.0; C[1] = 0.0; C[2] = 0.0; C[3] = 0.0;
```

## Example: 2 x 2 Matrix Multiply (Part 2 of 2)

```
// used aligned loads to set
 //c1 = [c 11 | c 21]
  c1 = mm load pd(C+0*lda);
  //c2 = [c_12 | c_22]
  c2 = mm load pd(C+1*lda);
  for (i = 0; i < 2; i++) {
    /* a =
     i = 0: [a 11 | a 21]
     i = 1: [a 12 | a 22]
     a = mm load pd(A+i*lda);
    /* b1 =
     i = 0: [b 11 | b_11]
     i = 1: [b 21 | b 21]
     */
    b1 = mm load1 pd(B+i+0*lda);
    /* b2 =
     i = 0: [b 12 | b 12]
     i = 1: [b_22 | b 22]
    b2 = mm load1 pd(B+i+1*lda);
```

```
/* c1 =
   i = 0: [c 11 + a 11*b 11 | c 21 + a 21*b 11]
   i = 1: [c 11 + a 21*b 21 | c 21 + a 22*b 21]
  */
  c1 = _mm_add_pd(c1, _mm_mul_pd(a,b1));
  /* c2 =
   i = 0: [c 12 + a 11*b 12 | c 22 + a 21*b 12]
   i = 1: [c_12 + a_21*b_22 | c_22 + a_22*b_22]
  c2 = mm add pd(c2, mm mul pd(a,b2));
// store c1,c2 back into C for completion
_mm_store_pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);
// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return 0;
```

### **DGEMM Speed Comparison**

- Double precision GEneral Matrix Multiply: DGEMM
- Intel Core i7-5557U CPU @ 3.10 GHz
  - Instructions per clock (mul\_pd) 2; Parallel multiplies per instruction 4
  - => 24.8 GFLOPS
- Python:

```
def dgemm(N, a, b, c):
    for i in range(N):
        for j in range(N):
        c[i+j*N] = 0
        for k in range(N):
        c[i+j*N] += a[i+k*N] * b[k+j*N]
```

| N   | Python [Mflops] |  |  |  |
|-----|-----------------|--|--|--|
| 32  | 5.4             |  |  |  |
| 160 | 5.5             |  |  |  |
| 480 | 5.4             |  |  |  |
| 960 | 5.3             |  |  |  |

- 1 MFLOP = 1 Million floatingpoint operations per second (fadd, fmul)
- dgemm(N ...) takes 2\*N³ flops

### C versus Python

- c = a \* b
- a, b, c are N x N matrices

| N   | C [GFLOPS] | Python [GFLOPS] |
|-----|------------|-----------------|
| 32  | 1.30       | 0.0054          |
| 160 | 1.30       | 0.0055          |
| 480 | 1.32       | 0.0054          |
| 960 | 0.91       | 0.0053          |



### Vectorized dgemm

| N   | Gflops |      |  |
|-----|--------|------|--|
|     | scalar | avx  |  |
| 32  | 1.30   | 4.56 |  |
| 160 | 1.30   | 5.47 |  |
| 480 | 1.32   | 5.27 |  |
| 960 | 0.91   | 3.64 |  |

- 4x faster
- Still << theoretical 25 GFLOPS</li>

## **Loop Unrolling**

```
// Loop unrolling; P&H p. 352
const int UNROLL = 4;
void dgemm unroll(int n, double *A, double *B, double *C) {
    for (int i=0; i<n; i+= UNROLL*4) {</pre>
        for (int j=0; j<n; j++) {
              m256d c[4]; 4 registers
             for (int x=0; x<UNROLL; x++)</pre>
                 c[x] = _mm256_load_pd(C+i+x*4+j*n);
             for (int k=0; k<n; k++) {
                 _{m256d} b = _{mm256}broadcast_{sd(B+k+j*n)};
                 for (int x=0; x<UNROLL; x++) Compiler does the unrolling
                     c[x] = mm256 \text{ add } pd(c[x],
                             _{mm256} _{mul} _{pd} (_{mm256} _{load} _{pd} (A+n*k+x*4+i), b));
             for (int x=0; x<UNROLL; x++)
                 _{mm256\_store\_pd(C+i+x*4+j*n, c[x])}
```

| NI  | GFIops |      |                  |  |
|-----|--------|------|------------------|--|
| N   | scalar | avx  | unroll           |  |
| 32  | 1.30   | 4.56 | 12.95            |  |
| 160 | 1.30   | 5.47 | 19.70            |  |
| 480 | 1.32   | 5.27 | 14.50            |  |
| 960 | 0.91   | 3.64 | 6.91 <b>?</b> 51 |  |

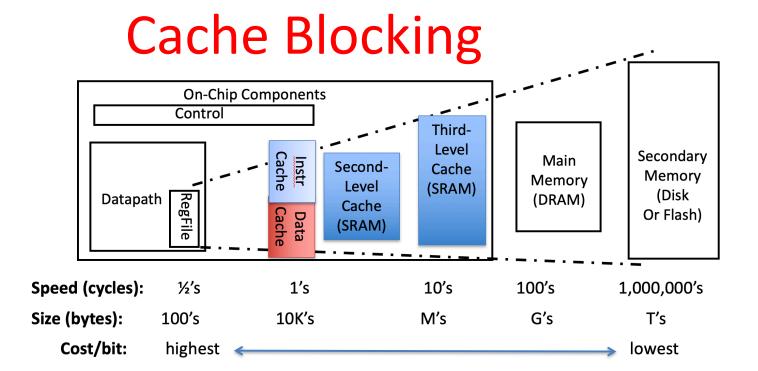
### FPU versus Memory Access

- How many floating-point operations does matrix multiply take?
  - $F = 2 \times N^3$  (N<sup>3</sup> multiplies, N<sup>3</sup> adds)
- How many memory load/stores?
  - $M = 3 \times N^2 \text{ (for A, B, C)}$
- Many more floating-point operations than memory accesses
  - q = F/M = 2/3 \* N
  - Good, since arithmetic is faster than memory access
  - Let's check the code ...

### But memory is accessed repeatedly

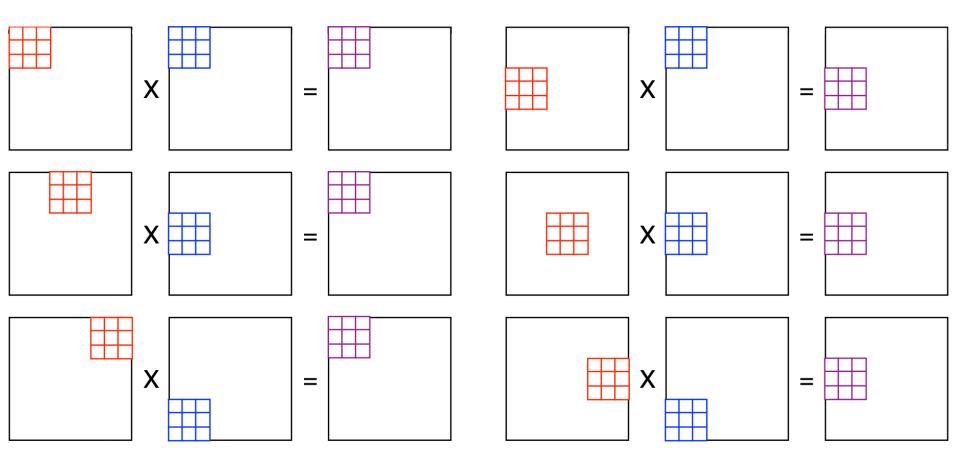
q = F/M = 1.6! (1.25 loads and 2 floating-point operations)

### **Inner loop:**



- Where are the operands (A, B, C) stored?
- What happens as N increases?
- Idea: arrange that most accesses are to fast cache!
- Rearrange code to use values loaded in cache many times
- Only "few" accesses to slow main memory (DRAM) per floating point operation
   P&H, RISC-V edition p. 465
  - -> throughput limited by FP hardware and cache, not slow DRAM

## Blocking Matrix Multiply (divide and conquer: sub-matrix multiplication)



### Memory Access Blocking

```
// Cache blocking; P&H p. 556
const int BLOCKSIZE = 32;
void do_block(int n, int si, int sj, int sk, double *A, double *B, double *C) {
    for (int i=si; i<si+BLOCKSIZE; i+=UNROLL*4)</pre>
        for (int j=sj; j<sj+BLOCKSIZE; j++) {</pre>
            m256d c[4]:
            for (int x=0; x<UNROLL; x++)
                c[x] = mm256 load pd(C+i+x*4+j*n);
            for (int k=sk; k<sk+BLOCKSIZE; k++) {</pre>
                 m256d b = mm256 broadcast sd(B+k+j*n);
                for (int x=0; x<UNROLL; x++)
                    c[x] = _mm256_add_pd(c[x],
                            mm256 mul pd( mm256 load pd(A+n*k+x*4+i), b));
            for (int x=0; x<UNROLL; x++)
                _{mm256\_store\_pd(C+i+x*4+j*n, c[x]);}
void dgemm_block(int n, double* A, double* B, double* C) {
    for(int sj=0; sj<n; sj+=BLOCKSIZE)</pre>
        for(int si=0; si<n; si+=BLOCKSIZE)</pre>
            for (int sk=0; sk<n; sk += BLOCKSIZE)</pre>
                do_block(n, si, sj, sk, A, B, C);
                                                                            56
```

### Performance

- Intel i7-5557U theoretical limit (AVX2): 24.8 GFLOPS
- Cache:
  - L3: 4 MB 16-way set associative shared cache
  - L2: 2 x 256 KB 8-way set associative caches
  - L1 Cache: 2 x 32KB 8-way set associative caches (2x: D & I)
- Maximum memory bandwidth (GB/s): 29.9

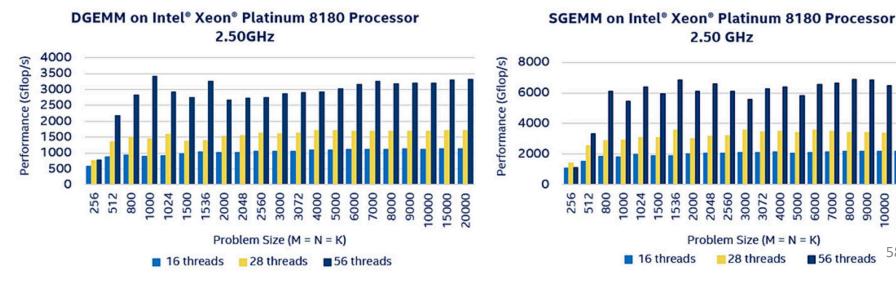
| N   | Size      | GFlops |      |        |          |
|-----|-----------|--------|------|--------|----------|
|     |           | scalar | avx  | unroll | blocking |
| 32  | 3x 8KiB   | 1.30   | 4.56 | 12.95  | 13.80    |
| 160 | 3x 200KiB | 1.30   | 5.47 | 19.70  | 21.79    |
| 480 | 3x 1.8MiB | 1.32   | 5.27 | 14.50  | 20.17    |
| 960 | 3x 7.2MiB | 0.91   | 3.64 | 6.91   | 15.82    |

### Intel Math Kernel Library

- AVX programming too hard? Use MKL!
  - C/C++ and Fortran for Windows, Linux, macOS
- Knowledge about AVX still very helpful for using MKL (e.g. Cache blocking, ...)
- MKL also for multi-threading...

DGEMM, SGEMM Optimized by Intel® Math Kernel Library on Intel® Xeon® Processor

4000 5000 6000 7000 8000 9000 10000 15000 30000



### And in Conclusion, ...

- Amdahl's Law: Serial sections limit speedup
- Flynn Taxonomy
- Intel SSE SIMD Instructions
  - Exploit data-level parallelism in loops
  - One instruction fetch that operates on multiple operands simultaneously
  - 128-bit XMM registers
- SSE Instructions in C
  - Embed the SSE machine instructions directly into C programs through use of intrinsics
  - Achieve efficiency beyond that of optimizing compiler