
CS 110
Computer Architecture

Dependability and RAID

Instructor:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/21s

School of Information Science and Technology

ShanghaiTech University

1

Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/21s

Review

• I/O gives computers their 5 senses

• I/O speed range is 100-million to one

• Polling vs. Interrupts

• DMA to avoid wasting CPU time on data transfers

• Disks and flash for persistent storage

• Networking

– Connecting computers, and networks

• Advanced Caches

– LRU/MRU, inclusive/exclusive/non-inclusive

– LLC slices, Scratchpad memory, etc. 2

Dependability

• Fault: failure of a
component

– May or may not lead to
system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

5

Dependability via Redundancy:
Time vs. Space

• Spatial Redundancy – replicated data or check
information or hardware to handle hard and
soft (transient) failures

• Temporal Redundancy – redundancy in time
(retry) to handle soft (transient) failures

6

Dependability Measures

• Reliability: Mean Time To Failure (MTTF)

• Service interruption: Mean Time To Repair (MTTR)

• Mean time between failures (MTBF)
– MTBF = MTTF + MTTR

• Availability =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅

• Improving Availability
– Increase MTTF: More reliable hardware/software + Fault

Tolerance

– Reduce MTTR: improved tools and processes for diagnosis
and repair

7

Understanding MTTF

8

Probability
of Failure

1

Time

Understanding MTTF

9

Probability
of Failure

1

TimeMTTF

1/3 2/3

Availability Measures

• Availability =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
as %

– MTTF, MTBF usually measured in hours

• Since hope rarely down, shorthand is
“number of 9s of availability per year”

• 1 nine: 90% => 36 days of repair/year
• 2 nines: 99% => 3.6 days of repair/year
• 3 nines: 99.9% => 526 minutes of repair/year
• 4 nines: 99.99% => 53 minutes of repair/year
• 5 nines: 99.999% => 5 minutes of repair/year

10

Reliability Measures

• Another is average number of failures per year:
Annualized Failure Rate (AFR)
– E.g., 1000 disks with 100,000 hours MTTF

– 365 days * 24 hours = 8760 hours

– (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed
disks per year on average

– 87.6/1000 = 8.76% annual failure rate

• Google’s 2007 study* found that actual AFRs for
individual drives ranged from 1.7% for first year
drives to over 8.6% for three-year old drives

11

*research.google.com/archive/disk_failures.pdf

Dependability Design Principle

• Design Principle: No single points of failure

– “Chain is only as strong as its weakest link”

– Achilles' Heel

• Dependability Corollary of Amdahl’s Law

– Doesn’t matter how dependable you make one
portion of system

– Dependability limited by part you do not improve

12

Error Detection/Correction Codes
• Memory systems generate errors (accidentally

flipped-bits)
– DRAMs store very little charge per bit
– “Soft” errors occur occasionally when cells are struck by

alpha particles or other environmental upsets
– “Hard” errors can occur when chips permanently fail
– Problem gets worse as memories get denser and larger

• Memories protected against failures with EDC/ECC
• Extra bits are added to each data-word

– Used to detect and/or correct faults in the memory system
– Each data word value mapped to unique code word
– A fault changes valid code word to invalid one, which can

be detected
13

Block Code Principles

• Hamming distance = difference in # of bits

• p = 011011, q = 001111, Ham. distance (p,q) = 2

• p = 011011,
q = 110001,
distance (p,q) = ?

• Can think of extra bits as creating
a code with the data

– There is Ham. distance between codes

Richard Hamming, 1915-98
Turing Award Winner

14

Parity

• Parity bits are added to a word to make it

– either odd: odd numbers of ‘1’

– or even: even number of ‘1’

• Let us add one parity bit to three-bit word

15

Odd Parity Even Parity

000 0001 000 0000

100 1000 100 1001

101 1011 101 1010

111 1110 111 1111

Parity: Simple Error-Detection Coding

• Each data value, before it is
written to memory is “tagged”
with an extra bit to force the
stored word to have even
parity:

• Each word, as it is read from
memory is “checked” by
finding its parity (including
the parity bit).

b7b6b5b4b3b2b1b0

+

b7b6b5b4b3b2b1b0 p

+

c

• A non-zero parity check indicates an error occurred:
– 2 errors (on different bits) are not detected

– nor any even number of errors, just odd numbers of errors are detected

• Minimum Hamming distance of valid parity codes is 2
16

p

Parity Example

• Data 0101 0101

• 4 ones, even parity now

• Write to memory:
0101 0101 0
to keep parity even

• Data 0101 0111

• 5 ones, odd parity now

• Write to memory:
0101 0111 1
to make parity even

• Read from memory
0101 0101 0

• 4 ones => even parity,
so no error

• Read from memory
1101 0101 0

• 5 ones => odd parity,
so error

• What if error in parity
bit?

17

Suppose Want to Correct 1 Error?

• Richard Hamming came up with simple to
understand mapping to allow Error Correction at
minimum distance of 3
– Single error correction, double error detection

• Called “Hamming ECC”
– Worked weekends on relay computer with unreliable

card reader, frustrated with manual restarting

– Got interested in error correction; published 1950

– R. W. Hamming, “Error Detecting and Correcting
Codes,” The Bell System Technical Journal, Vol. XXVI,
No 2 (April 1950) pp 147-160.

18

Detecting/Correcting Code Concept

• Detection: bit pattern fails codeword check

• Correction: map to nearest valid code word

Space of possible bit patterns (2N)

Sparse population of valid code words (2M << 2N)
- with identifiable signature

Error changes bit pattern to non-code

19

Hamming Distance: 8 code words

20

Hamming Distance 2: Detection
Detect Single Bit Errors

21

• No 1 bit error goes to another valid codeword
• ½ codewords are valid

Invalid
Codewords

Hamming Distance 3: Correction
Correct Single Bit Errors, Detect Double Bit Errors

22

• No 2 bit error goes to another valid codeword; 1 bit error near
• 1/4 codewords are valid

Nearest
000

(one 1)

Nearest
111
(one 0)

Hamming Error Correction Code

• Use of extra parity bits to allow the position
identification of a single error

1. Mark all bit positions that are powers of 2 as
parity bits (positions 1, 2, 4, 8, 16, …)
– Start numbering bits at 1 at left (not at 0 on right)

2. All other bit positions are data bits
(positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, …)

3. Each data bit is covered by 2 or more parity bits

23

Hamming ECC
4. The position of parity bit determines sequence

of data bits that it checks

• Bit 1 (00012): checks bits (1,3,5,7,9,11,...)
– Bits with least significant bit of address = 1

• Bit 2 (00102): checks bits (2,3,6,7,10,11,14,15,…)
– Bits with 2nd least significant bit of address = 1

• Bit 4 (01002): checks bits (4-7, 12-15, 20-23, ...)
– Bits with 3rd least significant bit of address = 1

• Bit 8 (10002): checks bits (8-15, 24-31, 40-47 ,...)
– Bits with 4th least significant bit of address = 1

24

Graphic of Hamming Code

• http://en.wikipedia.org/wiki/Hamming_code

25

http://en.wikipedia.org/wiki/Hamming_code

Hamming ECC

5. Set parity bits to create even parity for each
group

• A byte of data: 10011010

• Create the coded word, leaving spaces for the
parity bits:

• _ _ 1 _ 0 0 1 _ 1 0 1 0

1 2 3 4 5 6 7 8 9 A B C

• Calculate the parity bits

26

Hamming ECC
_ _ 1 _ 0 0 1 _ 1 0 1 0
• Position 1 checks bits 1, 3, 5, 7, 9, 11:

? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1:
0 _ 1 _ 0 0 1 _ 1 0 1 0

• Position 2 checks bits 2, 3, 6, 7, 10, 11:
0 ? 1 _ 0 0 1 _ 1 0 1 0. set position 2:
0 1 1 _ 0 0 1 _ 1 0 1 0

• Position 4 checks bits 4, 5, 6, 7, 12:
0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4:
0 1 1 1 0 0 1 _ 1 0 1 0

• Position 8 checks bits 8, 9, 10, 11, 12:
– 0 1 1 1 0 0 1 ? 1 0 1 0. set position 8:
– 0 1 1 1 0 0 1 0 1 0 1 0

27

Hamming ECC

• Final code word: 011100101010

• Data word: 1 001 1010

28

Hamming ECC Error Check

• Suppose receive

011100101110

0 1 1 1 0 0 1 0 1 1 1 0

29

Hamming ECC Error Check

• Suppose receive
011100101110

0 1 0 1 1 1 √

11 01 11 X-Parity 2 in error

1001 0 √

01110 X-Parity 8 in error

• Implies position 8+2=10 is in error
011100101110

30

Hamming ECC Error Correct

• Flip the incorrect bit …
011100101010

• Double check
011100101010

0 1 0 1 1 1 √

11 01 01 √

1001 0 √

01010 √

31

Hamming ECC Error Detect

• Suppose receive
010100001010

0 0 0 0 1 1 √

10 00 01 √

1000 0 X

01010 √

32

Two errors can be detected,
but not correctable

How about ≥3 bits error?

Cyclic Redundancy Check

• Parity is not powerful enough to detect long runs of
errors (also known as burst errors)

• Better Alternative: Reed-Solomon Codes
– Used widely in CDs, DVDs, Magnetic Disks
– RS(255,223) with 8-bit symbols: each codeword contains

255 code word bytes (223 bytes are data and 32 bytes are
parity)

– For this code: n = 255, k = 223, s = 8, 2t = 32, t = 16
– Decoder can correct any errors in up to 16 bytes anywhere

in the codeword

33

RAID: Redundancy for Disks

• Why we still worry about disks?

– Trade-off: price, capacity, density, etc.

– When you need storage space in petabytes (PB) or
exabytes (EB)

• 1 PB = 1024 TB

• 1 EB = 1024 PB

– Do not forget that flash-based SSDs also fail

• Limited program/erase cycles  wear leveling

34

Evolution of the Disk Drive

35
IBM RAMAC 305, 1956

IBM 3390K, 1986

Apple SCSI, 1986

Can smaller disks be used to close gap in
performance between disks and CPUs?

Arrays of Small Disks

36

14”
10”5.25”3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk designs

Low End High End

Replace Small Number of Large Disks with Large Number of
Small Disks! (1988 Disks)

37

Capacity

Volume

Power

Data Rate

I/O Rate

MTTF

Cost

IBM 3390K

20 GBytes

97 cu. ft.

3 KW

15 MB/s

600 I/Os/s

250 KHrs

$250K

IBM 3.5" 0061

320 MBytes

0.1 cu. ft.

11 W

1.5 MB/s

55 I/Os/s

50 KHrs

$2K

x70

23 GBytes

11 cu. ft.

1 KW

120 MB/s

3900 IOs/s

??? Hrs

$150K

Disk Arrays have potential for large data and I/O rates, high
MB per cu. ft., high MB per KW, but what about reliability?

9X

3X

8X

6X

RAID: Redundant Arrays of
(Inexpensive) Disks

• Files are “striped” across multiple disks

• Redundancy yields high data availability
– Availability: service still provided to user, even if

some components failed

• Disks will still fail

• Contents reconstructed from data
redundantly stored in the array
➔ Capacity penalty to store redundant info

➔ Bandwidth penalty to update redundant info

38

RAID 0: Striping

• RAID 0 provides no fault tolerance or
redundancy

– Striping, or disk spanning

– High performance

39

A0 A1 A2 A3

A4 A5 A6 A7

RAID 1: Disk Mirroring/Shadowing

40

• Each disk is fully duplicated onto its “mirror(s)”
• Very high availability can be achieved

• Bandwidth sacrifice on write:
• Logical write = N physical writes
• Reads may be optimized

• Most expensive solution: 100% capacity overhead
• RAID 10 (striped mirrors), RAID 01 (mirrored stripes):

• Combinations of RAID 0 and 1.

A0 A0 A0 A0

A1 A1 A1 A1

RAID 3: Parity Disk

41

P

10010011
11001101
10010011
. . .

logical record
1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

P contains sum of
other disks per stripe
mod 2 (“parity”)
If disk fails, subtract
P from sum of other
disks to find missing information

Striped physical
records

RAID 4: High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk
Address

Stripe

Insides of 5
disks

Example:
small read D0
& D5, large
write D12-
D15

42

Inspiration for RAID 5

• RAID 4 works well for small reads
• Small writes (write to one disk):

– Option 1: read other data disks, create new sum and
write to Parity Disk

– Option 2: since P has old sum, compare old data to
new data, add the difference to P

• Small writes are limited by Parity Disk: Write to
D0, D5 both also write to P disk

43

D0 D1 D2 D3 P

D4 D5 D6 PD7

RAID 5: High I/O Rate Interleaved Parity

44

Independent
writes
possible
because of
interleaved
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk
Addresses

Example:
write to D0,
D5 uses disks
0, 1, 3, 4

Problems of Disk Arrays: Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

45

And, in Conclusion, …

• Great Idea: Redundancy to Get Dependability

– Spatial (extra hardware) and Temporal (retry if error)

• Reliability: MTTF & Annualized Failure Rate (AFR)

• Availability: % uptime

• Memory

– Hamming ECC: correct single, detect double

• RAID

– Interleaved data and parity

46

